Plan Your Target And Learn Your SKkills:
Transferable State-Only Imitation Learning
via Decoupled Policy Optimization

ICML 2022 Publication
Minghuan Liu, Zhengbang Zhu, Yuzheng Zhuang, Weinan Zhang, Jianye Hao, Yong Yu, Jun Wang

Shanghai Jiao Tong University = Huawei Noah’s Ark Lab

Motivation

Can we imitate the high-level planning mode and transfer to different action spaces?

- How to model and generalize the high-level planning mode?
- How to transfer such an ability?
- A state-to-action policy is ad-hoc to the action space and dynamics

Observation:

- A policy can be seen as a composition of planner and inverse dynamics
- The planner can be universal and the inverse dynamics can be ad-hoc to
different action spaces

Decouple the policy

Decoupled Policy

e [(@)= opan
Planner Model

v
Can be a control module

m or learn from scratch
\ A

Environment

Can be pretrained
and generalizable

%

Formulation: r= T-1 (T(rg))
~~ ~——

inverse dynamics state planner

ne(als) = // T(s'|s,a)mE(als)ds’

=/ p""E(S,Sl)IﬂE(a|S’3/) dif

Pri (8) _
inverse dynamics
/s

B (8 18) Ts (6] 8,:8") 8"

/
state planner

Given a global inverse dynamics, we
can learn from state-only demostrations
by matching state planner (need an
accurate inverse dynamics so it can
obtain a correct action to interact)!

Definition 4.2. A hyper-policy {2 € A is a maximal set of
policies sharing the same state transition occupancy such
that for any 71, w2 € €2, we have pr, (s, 8") = pr,(s,5).

ha(s)s) = 228 %) / HalayT (s |5, d) das

state planner ngQ(sag) ds a

argmin (pq . (s,8'), pa(s,s’))
Q

= argminE, g (ha,(s']s), ha(s'|s))] .
hg

Learn by supervised learning

1. Learn state planner from state-only demonstrations!
- Can cause compounding error problem!
Tk
mJnL ' =E (s s)~ap [Di(has (5']8) | hy (s']5))] -
2. Learn (global) inverse dynamics from sampled data!
- This is the only way to learn this module!
- State planner is only meaningful when given an accurate inverse dynamics model
to sample in the environment and reach a desired state.
N
min L' = E(s ¢yury [De(Irng (als,)| 14 (als, s'))] .

P

Decoupled policy gradient

- We can also do policy gradient to learn the state planner! This will alleviate
compounding error when doing imitation learning.

Vo u L7 = E(s,a)~r [Q(S,a) Vg4 log me 4 (als)]
= Epaer | ([1(als,)Vuhu(s'ls)ds

m(als)
+ Egnn [Vols(als, s)])] '

- We should let the inverse dynamics to be an accurate control module at least
for the current policy when learning the planner, the inverse dynamics
function is static when optimizing the policy function.

Decoupled policy gradient

- If given an accurate (at least local) inverse dynamics model
s' = h(e;s), m(als) = Eeun [L(als, h(e; s))]

Vb = B | o) (7T (Gl el e) Vibuleid))

(als)

- Explain: we are taking the knowledge from the inverse dynamics about action
to update parameters of the state planner by updating the prediction about
the next state with error As' = aV,I(als, h(e; s))
- Reward can be obtained through GAN-like methods for imitation learning,
such as GAIfO - using discriminator D, (s, s’) to obtain the reward r(s,a) £ r(s,s’)

Problem: agnostic decoupled PG

Simply applying DePG to obtain the desired high-level target planner is faced with serious
learning challenges, especially when the inverse dynamics model is approximated by NNs.

Why?

A constraint on the inverse dynamics model’s input - the prediction of the target planner
MUST be a legal neighbor state.

However simply apply decoupled PG does not ensure that.
An illegal state transition could still be a legal input to the approximated inverse dynamics
model and it may still provide a feasible action to interact with the environment.

Problem: agnostic Decoupled PG (DePG)

Simply applying DePG to obtain the desired high-level target planner is faced with serious
learning challenges, especially when the inverse dynamics model is approximated by NNs.

An illustrative case:

T

= =l 11

(a) Grid World Setting (b) Supervised DePO (c) Agnostic DePG (d) DePO

Figure 2: Grid world environment and the prediction of the learned state planner. (a) The expert starts from the left-bottom corner (0,0) to
the right-upper (6,6) and the arrows on the yellow grid depicts the path of the expert. The agent is required to start at any grid on the map
except the shaded zone. We test three variants under the decoupled policy structure where both modules are learned from scratch. (b)
Supervised learning only from the dataset results in predictions of the target state on expert paths, even if not a neighboring (legal) one. (c)
Agnostic DePG learns to predict arbitrary states, while the inverse dynamics can still give a legal action to reach a neighbor state. (d) The
proposed DePO algorithm, which generalizes the planning into every out-of-demonstration state (white blocks) with legal transitions.

Solution: Constraint by Calibrated Decoupled PG (CDePG)

Vy’;cw - E(s,a,s')wﬂ [Q(S’ a)vw log h¢(3'|3)]

Explain: Optimizing CDePG can be realized as maximizing the probability to target
state s’ on state s if a is a good action regarding the inverse dynamics is accurate.

Trade-off:

- CDePG has a severe exploration problem since the planner is only allowed to
predict a visited state.

- DePG provides a way to explore the most promising actions although it is not
responsible for getting legal state transition.

Practice: Optimize DePG and CDePG jointly.

ngn LP" = LT oo+ A (LM + LEpepc)

Algorithm

Algorithm 1 Decoupled Policy Optimization (DePO)

1: Input: State-only expert demonstration data D = {(s;)}Y,, empty replay buffer B, randomly initialized discriminator
model D,,, state transition predictor h,, and parameterized inverse dynamics model I

2: fork=0,1,2,--- do

3: b Pre-training stage

4: Collect trajectories {(s, a, s, 7, done)} using a random initialized policy ™ = E..xr [L5(a|s, hy (€; s))] and store in

B

5. Sample (s, a, s’) ~ B and update ¢ by L’ (Eq. (9))

6: end for

7: fork=0,1,2,--- do

8: > Online tramlng stage

9: Collect trajectories {(s, a, s’, 7, done)} using current policy m = Ecnr [I4(als, hy (€; s))] and store in B
10: Sample (s,a,s’) ~ B, (s,s') ~D
11: if Learn inverse dynamics function then

12 repeat _ _ _

13: Update ¢ by L7 (Eq. 9)) First update inverse dynamics model!
14: until Converged

15: endif

16: Update the discriminator D,, with the loss:

LD = —E(, y)pllog D,(s,s')] — Eqs..)~pllog (1 — Dy(s,s'))], Then update D to get reward! (If imitation)

17: Update ¢ by £" (Bq. (17)) At last update state planner
18: end for

Experiments

Imitation and transferring to different action dynamics / spaces:

Keep the planner and learn the inverse dynamics by supervised learning only.

Discrete space (grid world): 14 g — oero
% sl % Sl

B0
©

o
o
O 0.6
o
=]
04

0.2

0.0+ +
] 20 40 80 80 100 120 140 160 180 200

Epoch
Figure 3: Transferring experiment on grid world environment. The
y-axis denotes the success rate of reaching (5,5). The solid line and
the shade shown in this and following figures represent the mean
and the standard deviation of the results over 5 random seeds.

Experiments

Imitation and transferring to different action dynamics / spaces:

Continous space (mujoco): given the orginal action space as m and dynamics as s’=f(s,a)

Transfer action dynamics: 0.8 gravity, n=2m and s’=f(s,h(a))
h = —exp(al0: n/2] + 1) + exp(a[n/2 : —1]))/1.5

InvertedPendulum-v2 Hopper-v2 Walker-v2 HalfCheetah-v2 Humanoid-v2

300 o e ———— e ———————————— 18000 o oo e ——————

3000 . 5000 12000 5000
E e €
£ £ 2500 £ 4000 E 10000 5 4000
7] 5 5 .5]
o & 2000 & 3000 o 8000 4
3 3 3 3 3
= 2 1500 =3 & 6000 X
8 8 & 2000 8 B
2 2 2 S 4000 2
< < 1000 <ioto < <

2000: 1000
500
0 o
0 o
o 02 04 06 08 1.0 12e6 o 02 04 06 08 1.0e6 o 08 16 24 32 40 48e6 o 04 08 12 16 20e6 o 16 32 48 64 8.0e6
steps steps steps steps steps
- DePO — GAIfO — BCO = DePO (Supervised) —— GAIfO-DP

Figure 4: Learning curves on easy-to-hard continuous control benchmarks, where the dash lines represent the expert performance.

InvertedPendulum-v2 Hopper-v2 Walker-v2 HalfCheetah-v2 Humanoid-v2
1000 3500 o s o e e e o S DN Sm— it Vi ptiaheis s
| se000 12000 5000

c 800 € € €
5 5 4000 5 10000 5 4000
K @ @ @
< 600 Z 3000 8000 = —— DePO
o o o o 3000 — GAIfO
& & & 6000 &
@ 400 ® 2000 ® ® = SAC (RL)
o o o 4000 o 2000
z 2 1000 z 2

200 2000 1000

n . 0 0 o e
0 02 04 06 08 10e6 0 02 04 06 08 1.0e6 0 02 04 06 08 10e6 0 02 04 06 08 1.0e6 0 02 04 06 08 1.0e6
steps steps steps steps steps

Figure 5: Transferring by pre-training on Mujoco tasks with complex action dynamics within 1e6 interaction steps.

Experiments

Co-training for different action dynamics / spaces (NGSIM dataset)

Inverse Normal Transpose

—— DePO/Co
— GAIfO
—— DePO

)
\

0 1 2 30 1 2 30 1 2 3
steps leb steps le6 steps le6

Figure 6: Co-training for different vehicles.

Experiments

Our method is general, can also be used for RL and transfer!

Hopper-v2 Walker-v2 HalfCheetah-v2

€ £ £
a3, - 2 600 S
g 3000 - 3 6000 8 10000
B 2000 g 4000 B
80 a0 80 5000 —— DePO
& ® 2000 I
$ 1000 S g SAC
> > >
< < 0 < 0
® 02 04 06 08 106 0 08 16 24 32 406 0 04 08 12 16 20¢6
w w w
wv wv wv
= = =
T 3 100 T2
4 & &
- - -
g, ® ©
a a0 a0
0 02 04 06 08 106 0 08 16 24 32 406 0 04 08 12 16 20
steps steps steps
Figure 16: RL experiments on Mujoco tasks over 5 random seeds.
Hopper-v2 Walker-v2 HalfCheetah-v2
< 4000 c —_—
g 3000 g —
& 219 DePO
B 2000 §
= 80 5000 e
§ 1000 § === SAC Convergence
< 5 < 0
? 02 04 06 08 106 0 02 04 06 08 106 0 02 04 06 08 106
w w w
7] 7 n
= S5 -
g ° S 10]
4 -2 [
o - - -5 9
£, g5 4
a o o
0
0 02 04 06 08 106 0 02 04 06 08 106 0 02 04 06 08 106
steps steps steps

Figure 17: One-shot Transferring by pre-training RL agents on Mujoco tasks with inverted action dynamics over 5 random seeds.

Experiments

State planner is accurate for multi-step planning!

InvertedPendulum-v2 Hopper-v2 Walker-v2 HalfCheetah-v2 Humanoid-v2
225 400
0.6 20
3.0 18 20.0 350
05
w w Wie Wiss w 300
0 Nas %) n 17 0
204 = = 14 = = 250
3 3 3 g 3 —— DePO
2 [Pred-Real MSE
: X o T 125 :
° ° ° ° B 150
@ @ @ 10 @ @
Po.2 £ < £ 10.0 a
a als [8 Q. 100
01 75
1.0 6 50
0.0 a 5.0 0
0 02 04 06 0.8 10e6 0 02 04 06 0.8 1.0e6 0 02 04 06 0.8 1.0e6 0 02 04 06 08 10e6 0 02 04 06 08 10e6
steps steps steps steps steps

Figure 10: MSE curves of the one-step prediction of the state planner and the real state that the agent achieves in the environment in
complex transfer experiments. The target state predictions are stably accurate along the whole training stage.

InvertedPendulum-v2 Hopper-v2 Walker-v2 HalfCheetah-v2 Humanoid-v2
60
25 10 — DePO
0.30 7 50
9
w025 w20 w we 4 40
= = 3 = =
Z 020 = = Zs =
o ™ o o
@15 [1] @ 30
015 « « 7 <, «
3 K 3 ki 3
20
&:9:20 a10 &6 a3 a
0.05 g 2 10
- 0.5
0.00 1 0
0 02 04 06 08 1.0e6 0 02 04 06 08 1.0e6 0 02 04 06 08 10e6 0 02 04 06 08 10e6 0 02 04 06 08 10e6
steps steps steps steps steps

Figure 11: MSE curves of the one-step prediction of the state planner and the real state that the agent achieves in the environment in
simple transfer experiments. The target state predictions are stably accurate along the whole training stage.

Experiments

State planner is accurate for multi-step planning!

Planned Rollout

NGSIM ~400 steps
Red vehicle is ego agent
Other vehicles are replay

https://www.youtube.com
/watch?v=WahVijjvcYYM

http://www.youtube.com/watch?v=WahVjjvcYYM&t=4

