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So — Q1
Markovian

S1 — as existence of an optimal

7"' a/ S . . o o o 1
(als) So —> A deterministic Markovian policy
Non-Markovian Who cares about non-Markovian policies?
m(alh) Partial observability
Imitation learning, risk-aversion, pure exploration, ... ?
h = (sg,a0,81,01,-..,5) 5 P p

I(Proposition 4.4.3, Puterman, 2014)
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CFOL Workshop @ ICML

Mutti et al. "Challenging Common Assumptions < Convex Reinforcement Learning (CRL)12
in Convex Reinforcement Learning''. 2022.
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policy m + CMP this paper
l Maximum State Entropy (MSE)3
marginal state distribution E(r)=H(d") =d" logd™
1
d™(s) = L Z Pr(s; = s) \
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CFOL Workshop @ ICML
Mutti et al. "Challenging Common Assumptions < Convex Reinforcement Learning (CRL)12
in Convex Reinforcement Learning''. 2022.
J(m) = F(d")

F is a convex/concave function

1(Zhang et al., 2020), 2(Zahavy et al., 2021), 3(Hazan et al., 2019)
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Finite-Sample Maximum State Entropy

E(n)= E [H(d)}

d~pT

A tool to compare Markovian and non-Markovian policies?

The entropy is non-additive, standard regret cannot be used
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Result. The optimal Markovian policy suffers positive regret

Rr_¢(mm, he) o< Var|Ber(my(a™|s))]
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—> non-Markovianity matters in finite-sample MSE
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Computational Tractability

Theorem (Computational Complexity). Optimizing the finite-sample MSE within the
space of non-Markovian policies is NP-hard.

‘SOaslyo-E ‘807817“'73]\7\
/@17. > /@17...780

Extended CMP with reward R(hr) = H(d}..) Reduction to a class of POMDPs =, 3SAT

exponential blowup with the horizon NP-hard problem!

1(Mundhenk et al., 2000)
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Computational Tractability

Theorem (Computational Complexity). Optimizing the finite-sample MSE within the
space of non-Markovian policies is NP-hard.

Can we solve the problem with function approximation?

DARL Workshop @ ICML &  Pre-Training Workshop @ ICML

Mutti et al. "Non-Markovian Policies for Unsupervised
Reinforcement Learning in Multiple Environments'. 2022.
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Take Home

Non-Markovian policies are better for finite-sample convex objectives

Optimizing non-Markovian policies exactly is often intractable

What Is Next?

Approximate methods to optimize non-Markovian policies for convex objectives

Applications: When is it critical to consider a finite-sample objective?
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