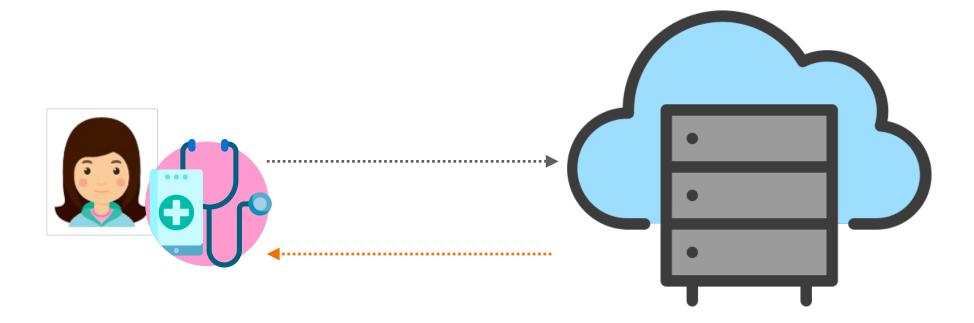
Shuffle Private Linear Contextual Bandits

Xingyu Zhou, Sayak Ray Chowdhury*

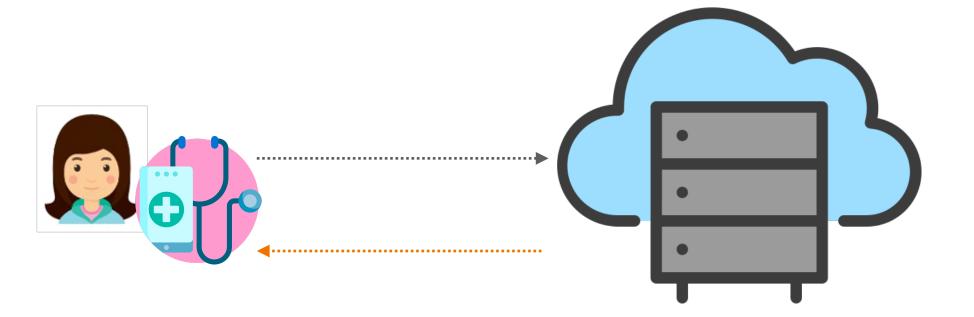
Wayne State University

ICML'22

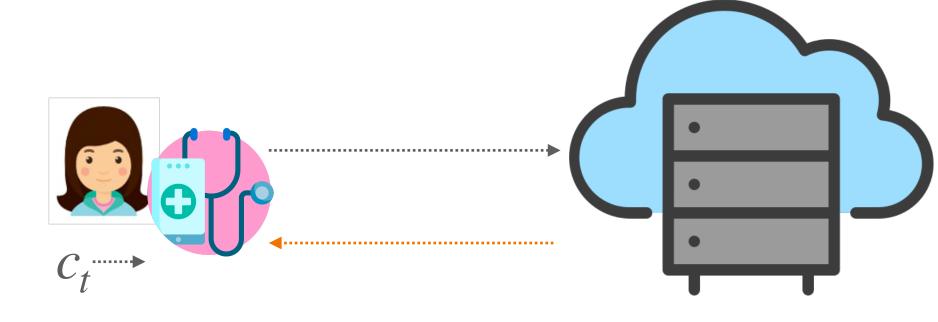
^{*} Equal Contributions, Post-doc at Boston University



 $^{\circ}$ For each time t = 1, ..., T

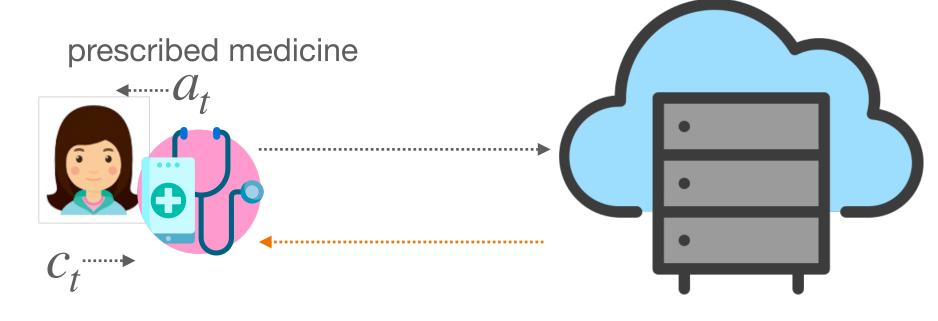


- $^{\circ}$ For each time t = 1, ..., T
 - 1. Observe context c_t



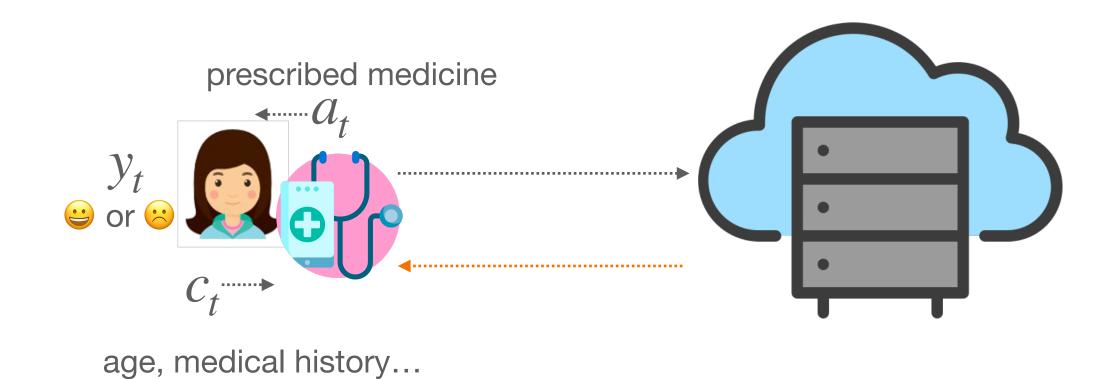
age, medical history...

- ° For each time t = 1, ..., T
 - 1. Observe context c_t
 - 2. Prescribes action a_t

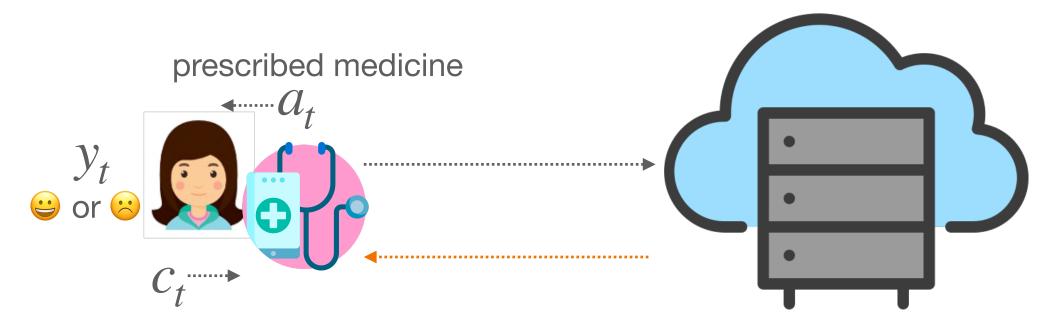


age, medical history...

- $^{\circ}$ For each time t = 1, ..., T
 - 1. Observe context c_t
 - 2. Prescribes action a_t
 - 3. Receive reward $y_t = \langle \phi(c_t, a_t), \theta^* \rangle + \epsilon_t$

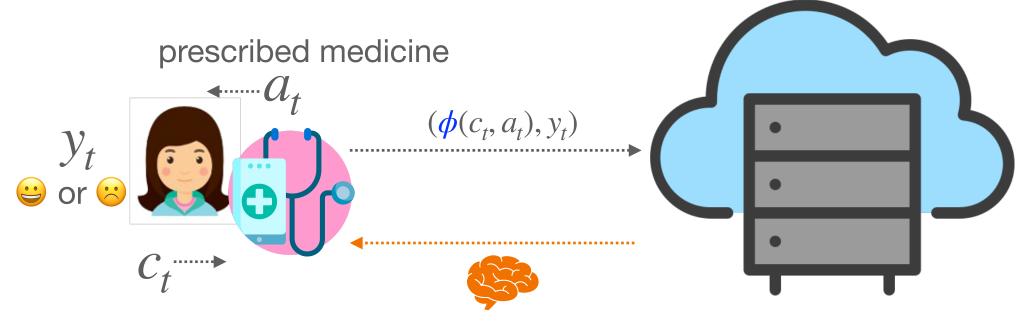


- $^{\circ}$ For each time t = 1, ..., T
 - 1. Observe context c_t
 - 2. Prescribes action a_t
 - 3. Receive reward $y_t = \langle \phi(c_t, a_t), \theta^* \rangle + \epsilon_t$ Unknown \mathbb{R}^d vector



age, medical history...

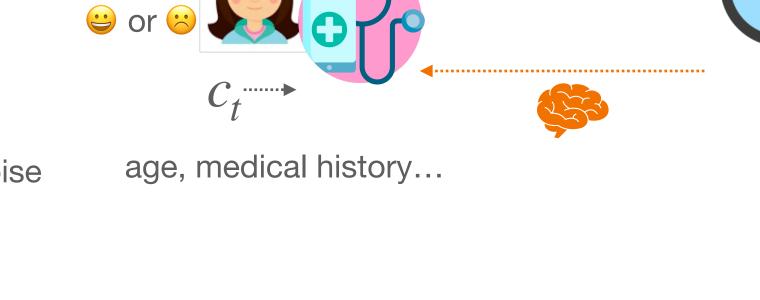
- $^{\circ}$ For each time t = 1, ..., T
 - 1. Observe context c_t
 - 2. Prescribes action a_t
 - 3. Receive reward $y_t = \langle \phi(c_t, a_t), \theta^* \rangle + \epsilon_t$
 - 4. Update model



age, medical history...

Unknown \mathbb{R}^d vector

- $^{\circ}$ For each time t = 1, ..., T
 - 1. Observe context c_t
 - 2. Prescribes action a_t
 - 3. Receive reward $y_t = \langle \phi(c_t, a_t), \theta^* \rangle + \epsilon_t$
 - 4. Update model



prescribed medicine

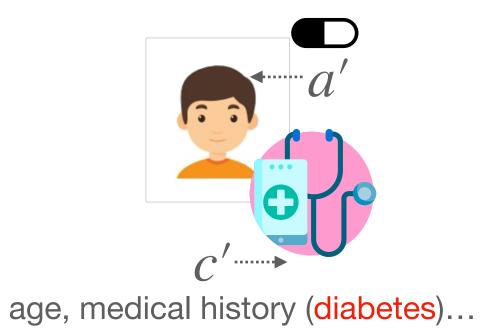
Unknown
$$\mathbb{R}^d$$
 vector

The goal is to minimize regret

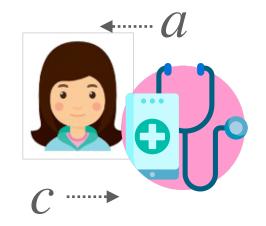
$$\operatorname{Reg}(T) = \sum_{t=1}^{T} \left[\max_{a} \langle \theta^*, \phi(c_t, a) \rangle - \langle \theta^*, \phi(c_t, a_t) \rangle \right]$$

- Both context and reward are sensitive information
- Standard LCB could reveal these information

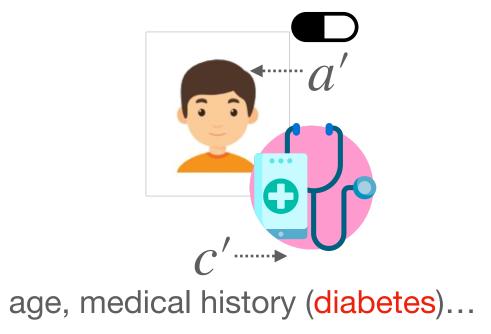
- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes



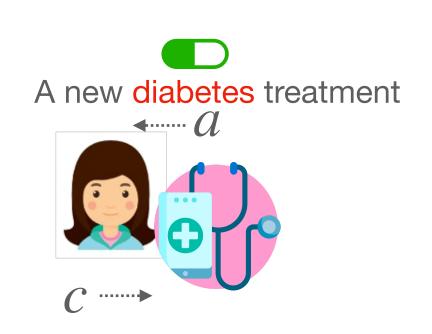
- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes
 - Alice is a new user and extremely happy with



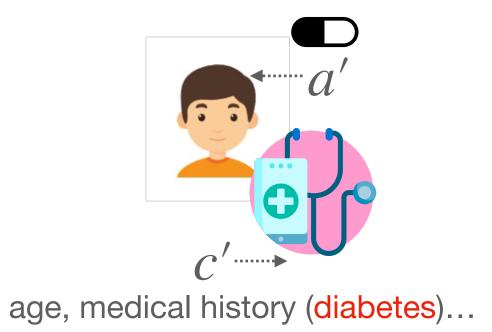
age, medical history...



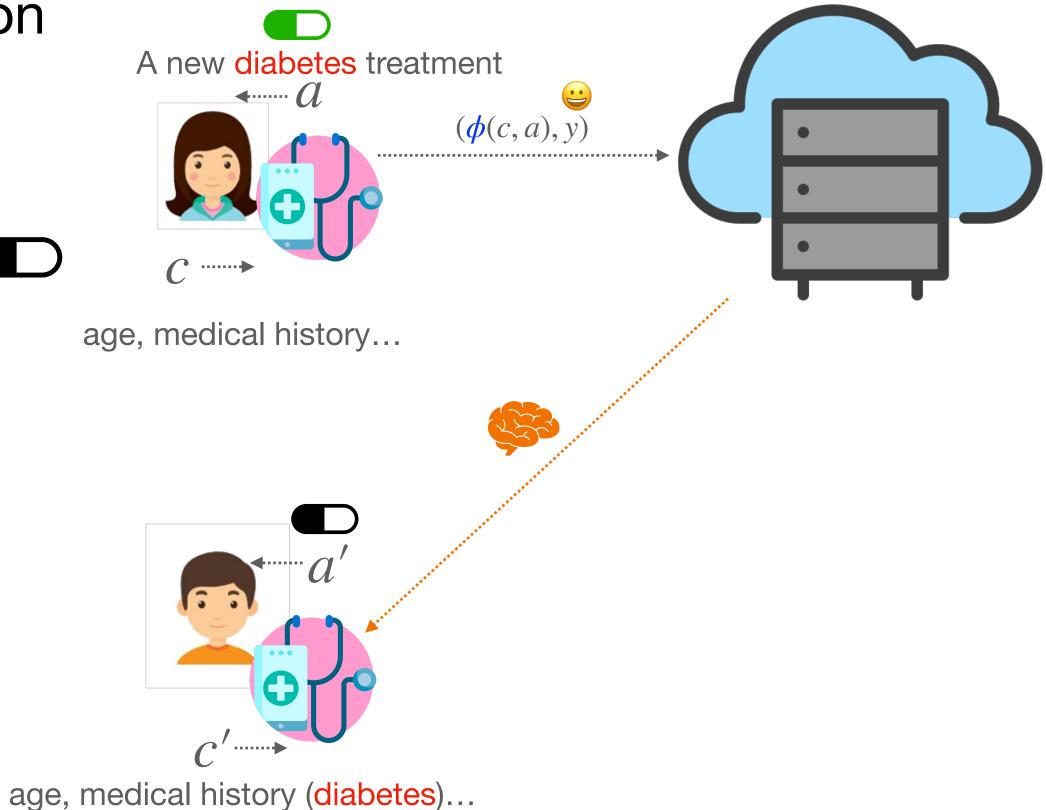
- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes
 - Alice is a new user and extremely happy with



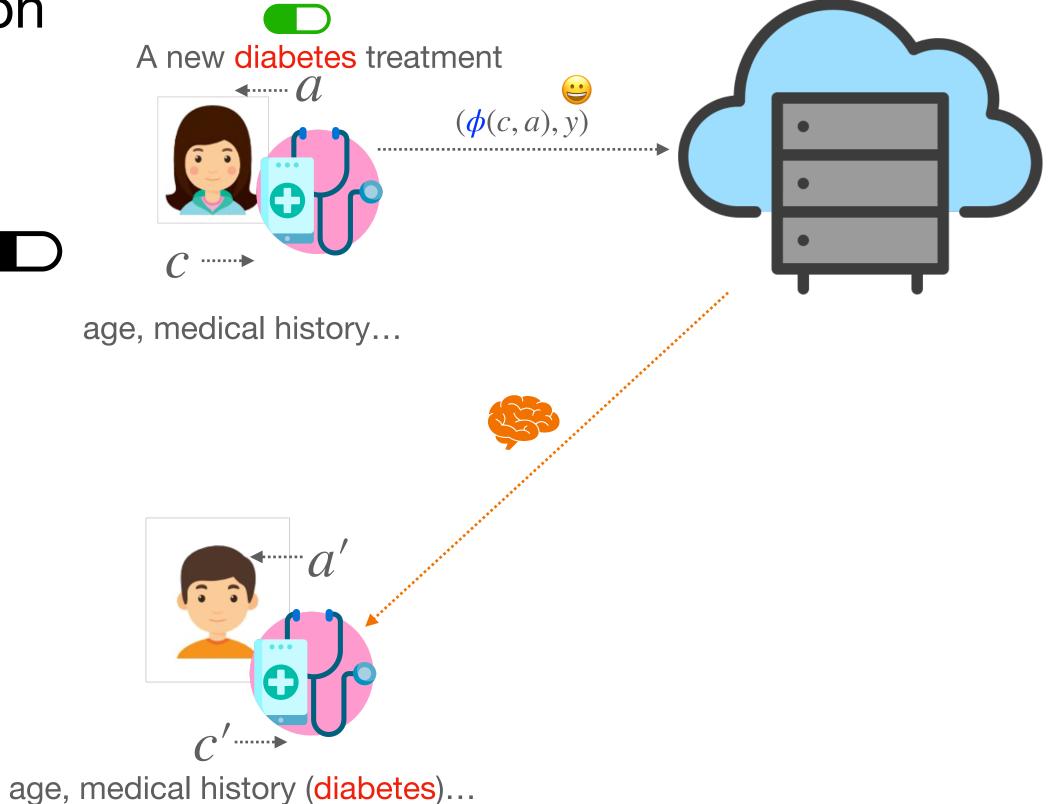
age, medical history...



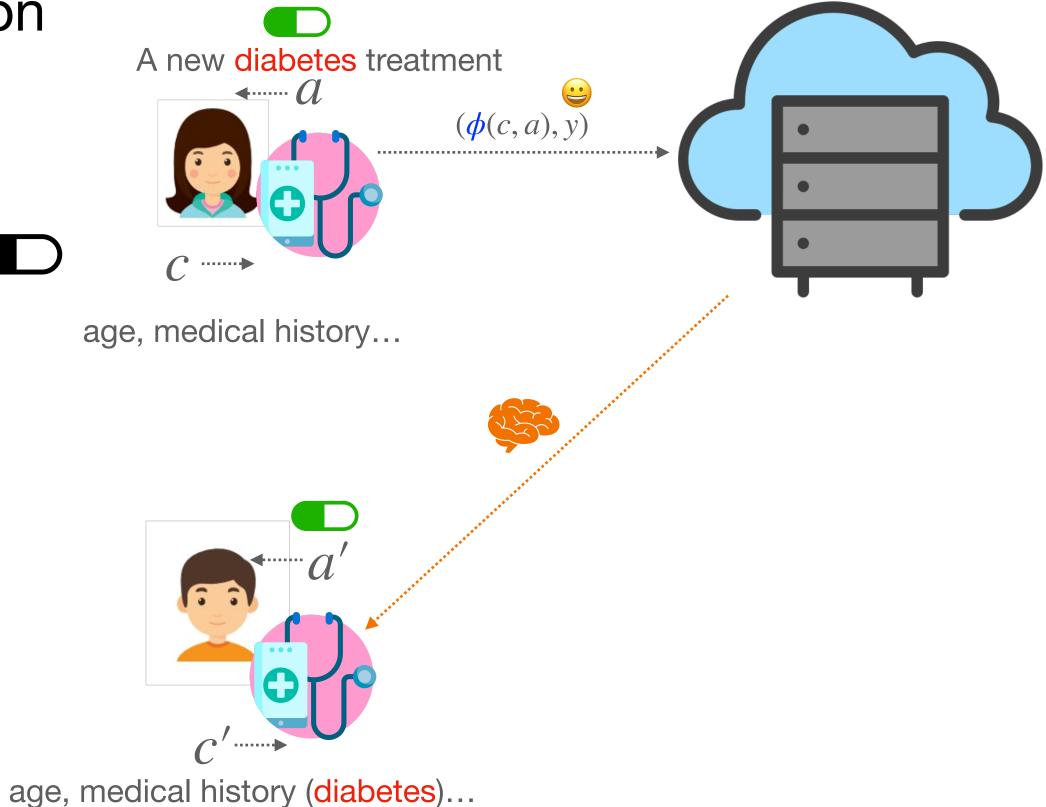
- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes
 - Alice is a new user and extremely happy with



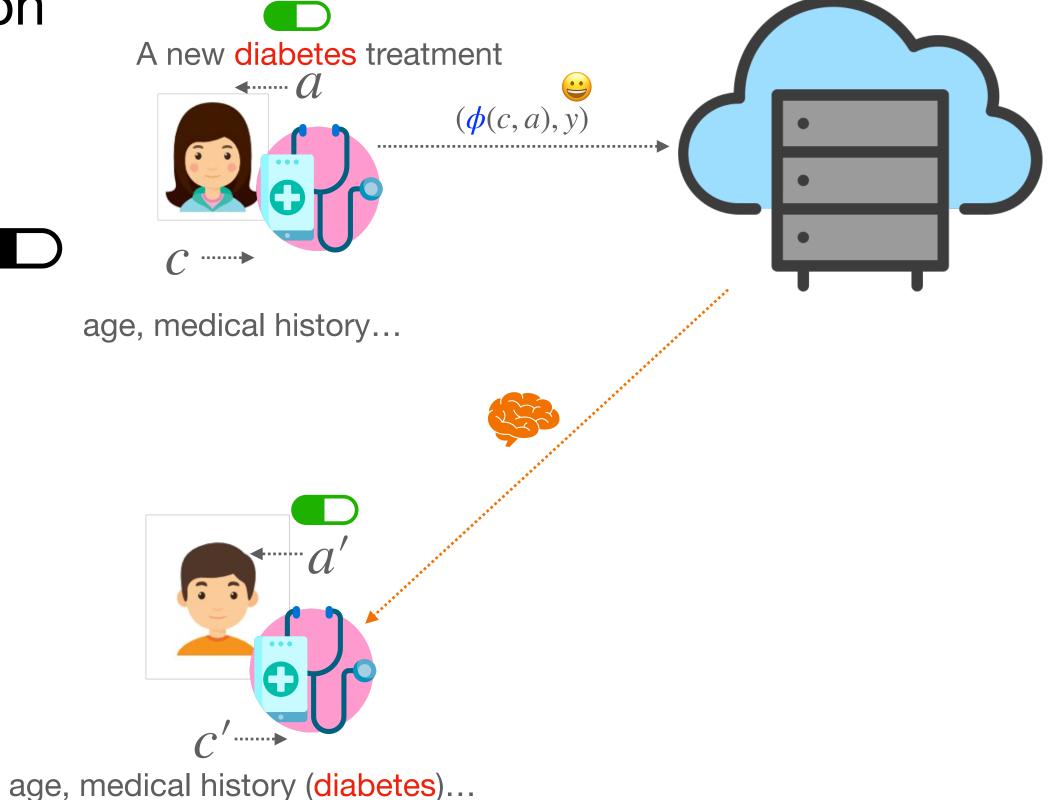
- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes
 - Alice is a new user and extremely happy with
 - Bob receives new recommendation



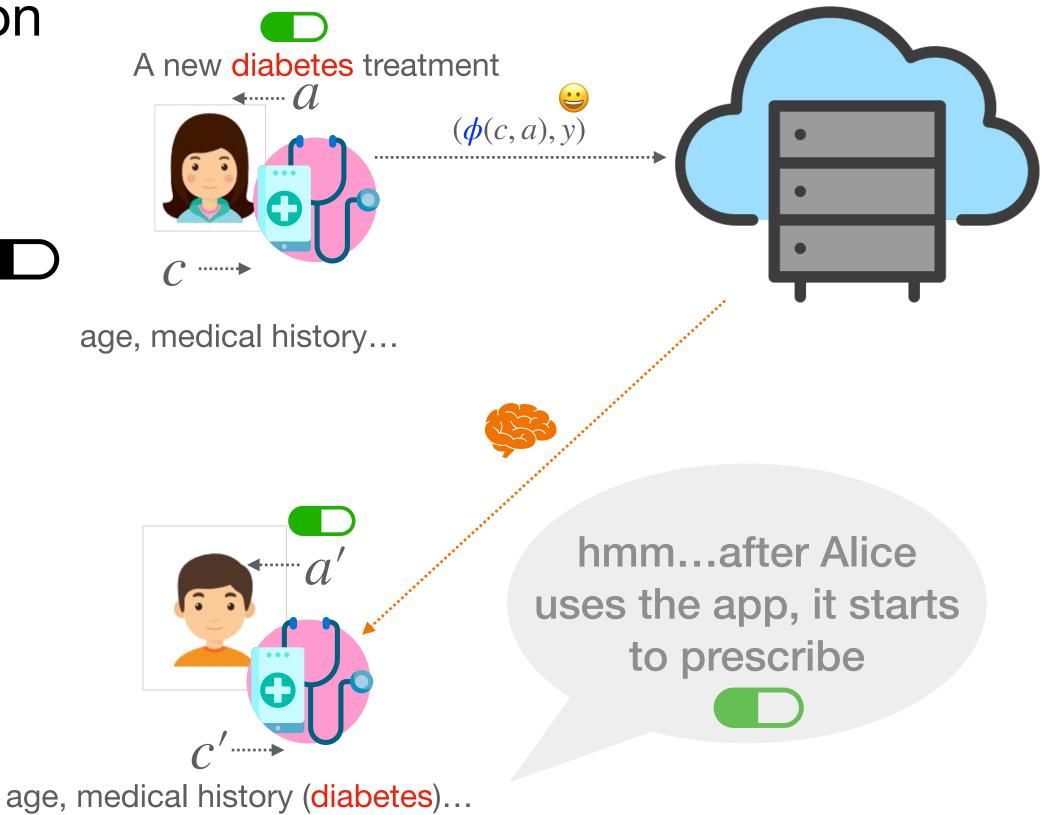
- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes
 - Alice is a new user and extremely happy with
 - Bob receives new recommendation



- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes
 - Alice is a new user and extremely happy with
 - Bob receives new recommendation
 - If Bob knows Alice is the most recent user



- Both context and reward are sensitive information
- Standard LCB could reveal these information
 - Bob has diabetes and health app often prescribes
 - Alice is a new user and extremely happy with
 - Bob receives new recommendation
 - If Bob knows Alice is the most recent user
 - Bob's belief that Alice has diabetes increases



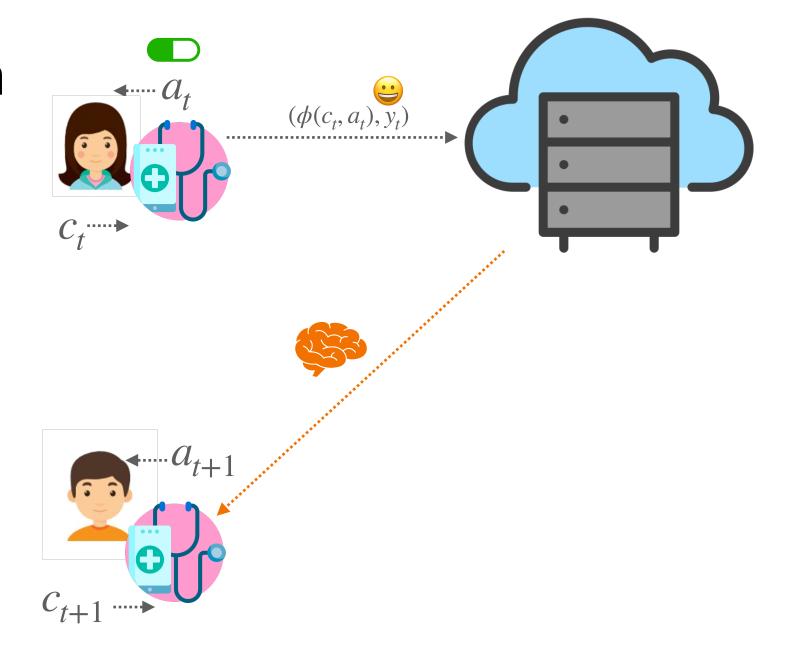
Central model

Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]

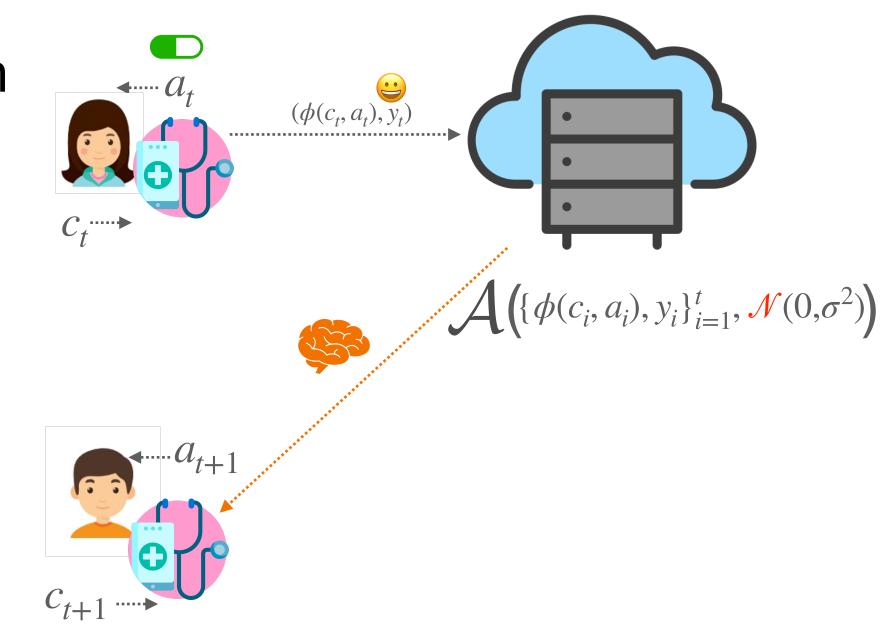
- O Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution

- Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- In LCB, central server updates model with injected noise

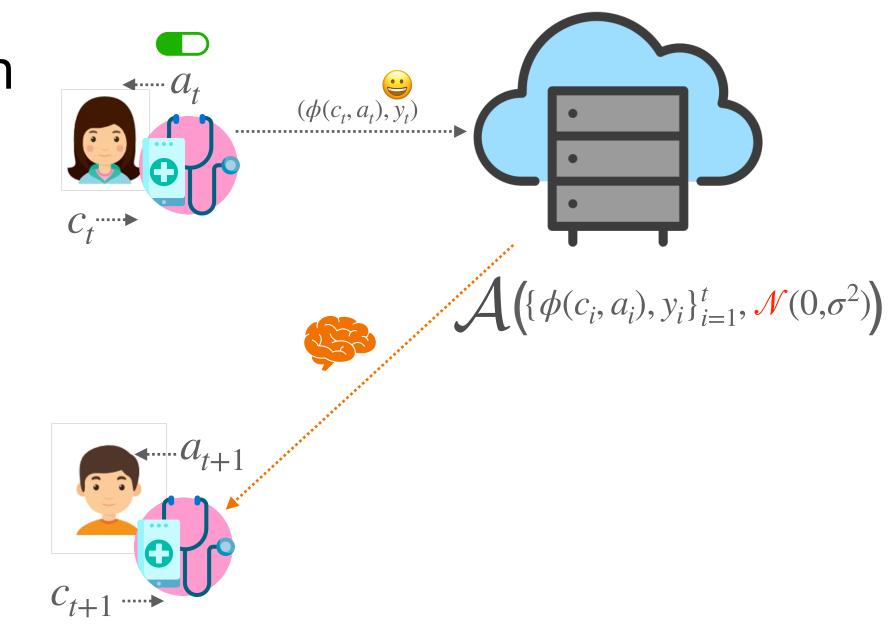
- Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- o In LCB, central server updates model with injected noise



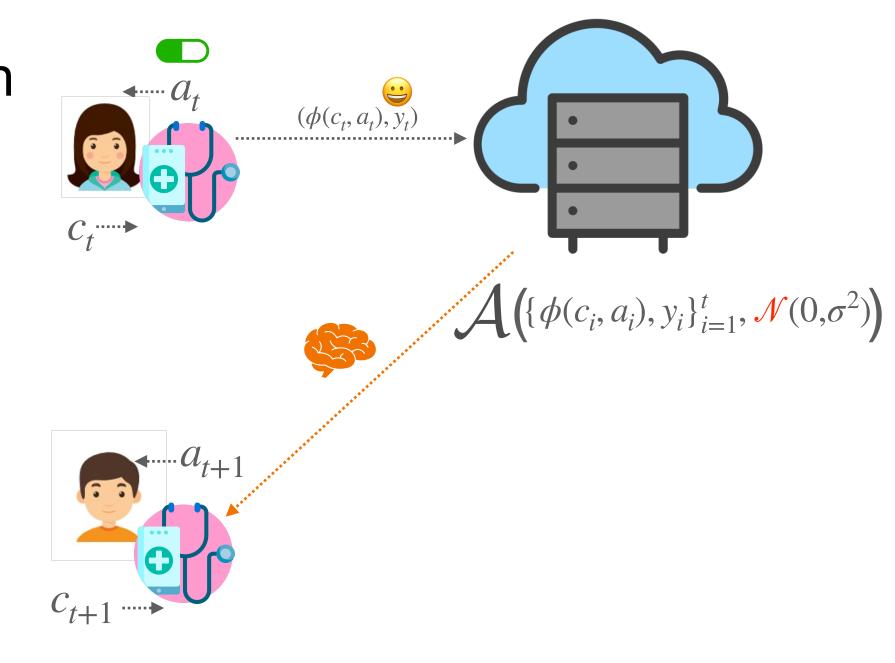
- O Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- o In LCB, central server updates model with injected noise



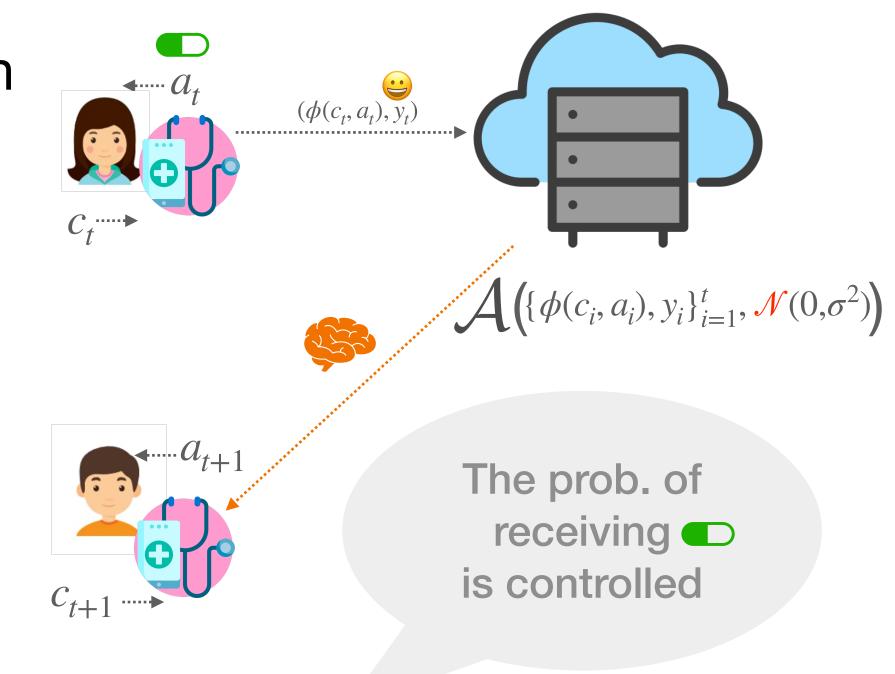
- O Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- o In LCB, central server updates model with injected noise
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$



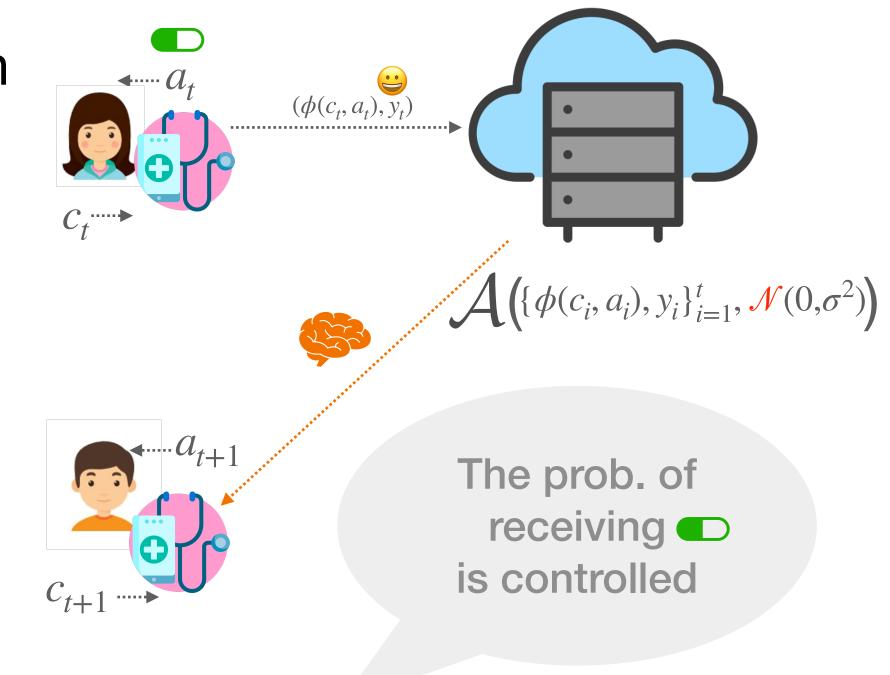
- O Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- o In LCB, central server updates model with injected noise
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ , δ , stronger privacy but worse regret



- O Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- o In LCB, central server updates model with injected noise
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ , δ , stronger privacy but worse regret

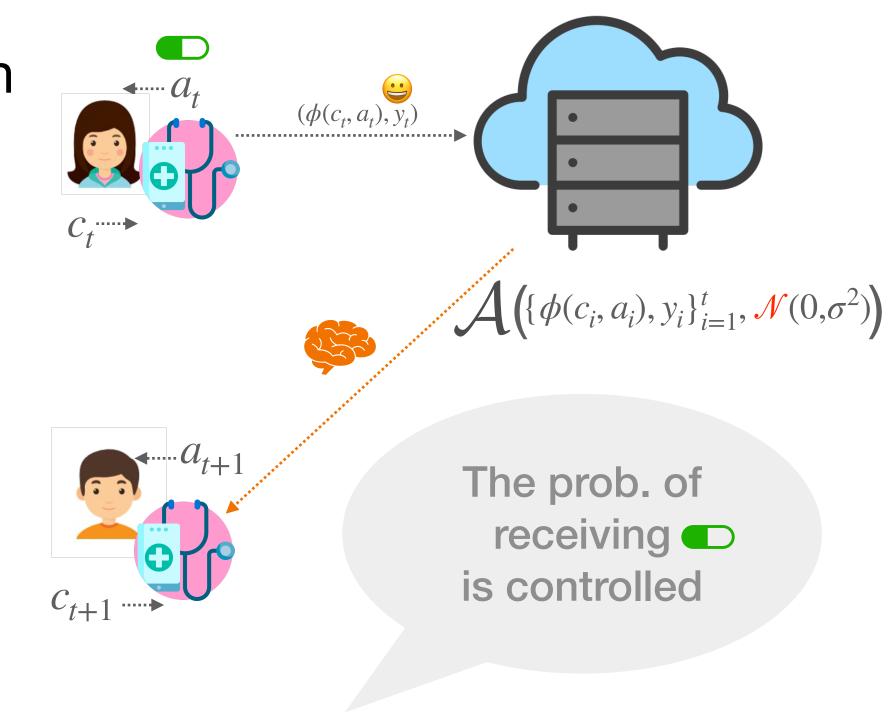


- Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- o In LCB, central server updates model with injected noise
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ , δ , stronger privacy but worse regret
- O Privacy vs Regret. [Shariff and Sheffet. 2018] shows that



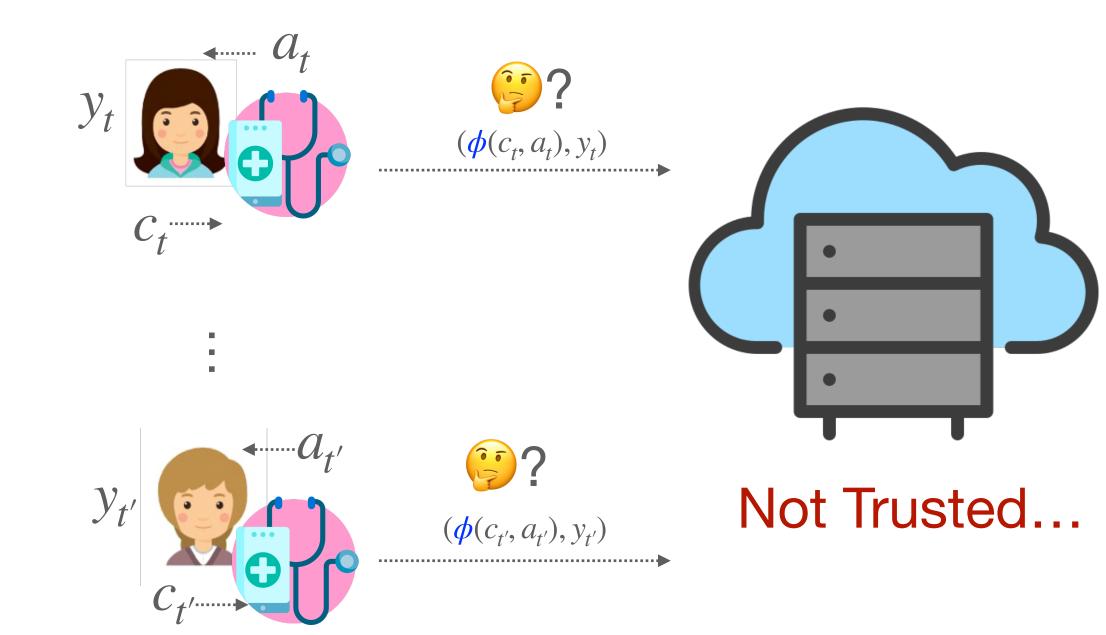
- O Differential Privacy (DP) provides formal privacy guarantee [Dwork et al. 2006]
- Well-tuned noise added to obscure each user's contribution
- o In LCB, central server updates model with injected noise
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ , δ , stronger privacy but worse regret
- O Privacy vs Regret. [Shariff and Sheffet. 2018] shows that

Regret
$$\tilde{O}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP*



Another Privacy Risk

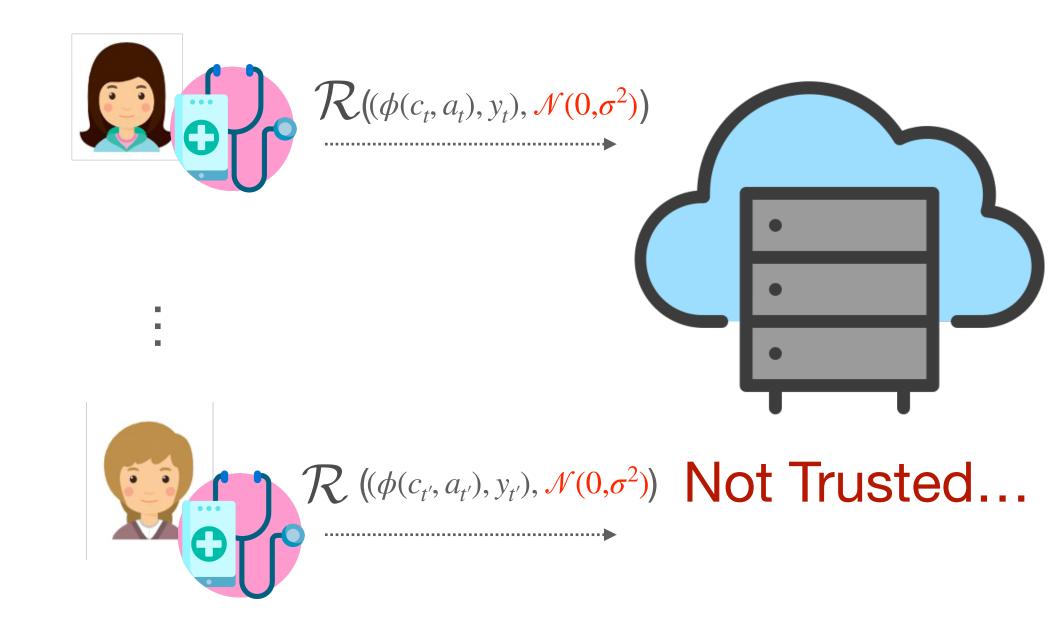
- Both context and reward are sensitive information
- Owner or with the owner of the owner o
 - Will it follow the right DP mechanism...?
 - Will it use my data for other use cases...?
 - Will it be attacked by an adversary...?
- Hence, users may not be willing to share their raw data
 - Context via $\phi(c_t, a_t)$
 - Reward y_t

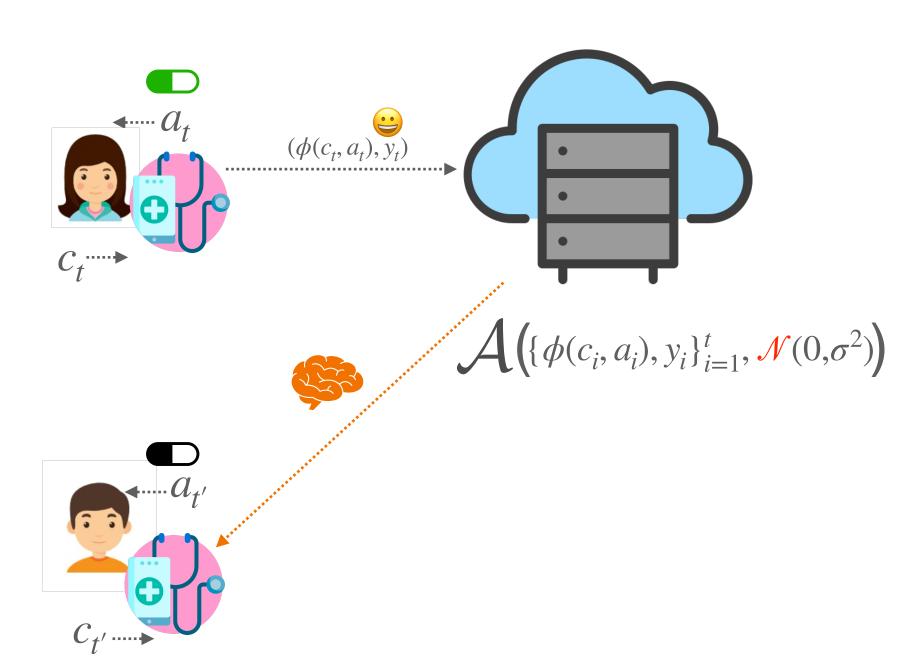


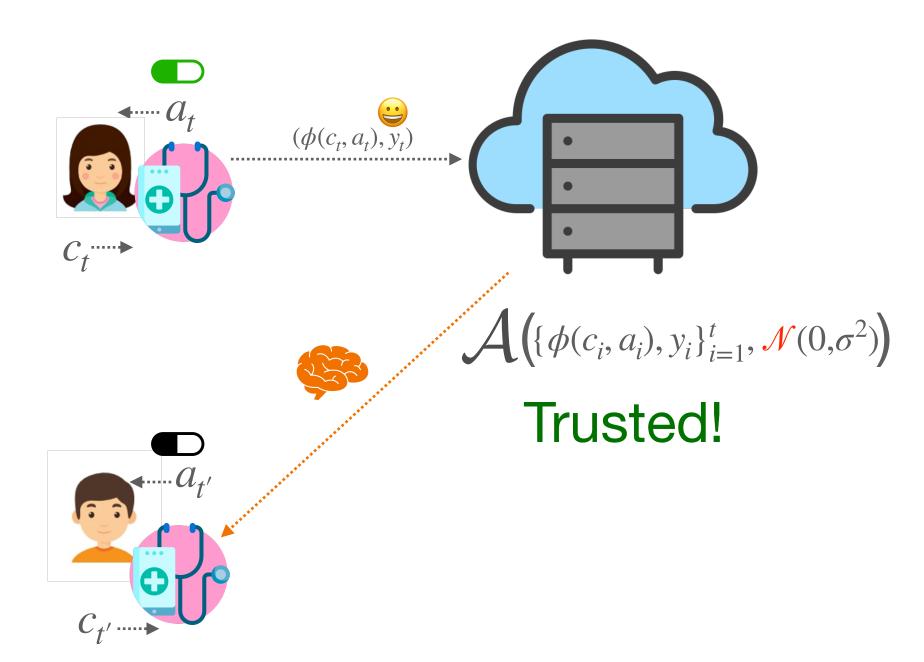
Local model

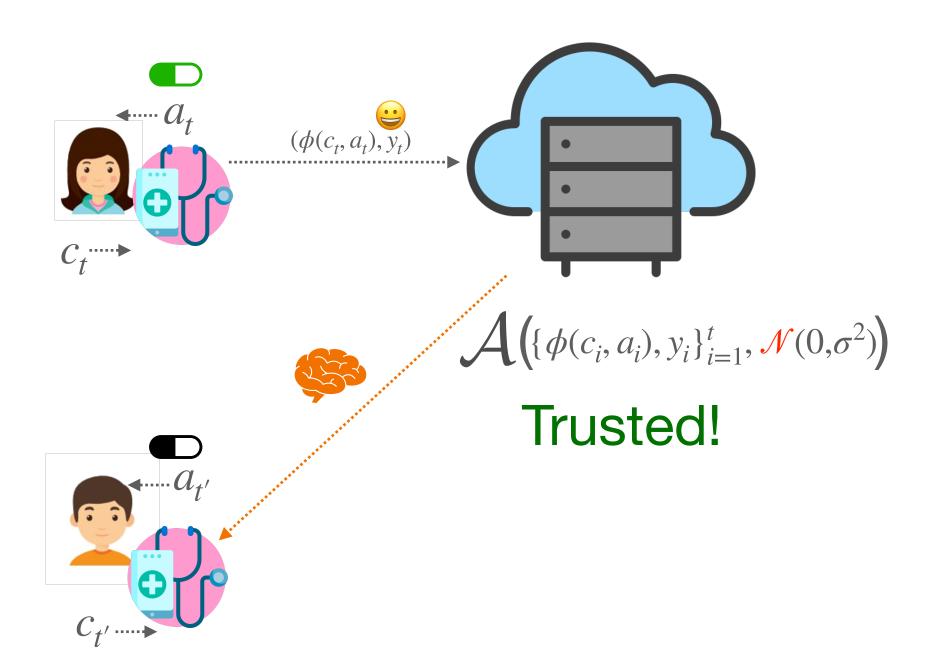
- Each user injects noise before sending data
 - By post-processing, local DP implies central DP
- \circ In LCB, each user applies local randomizer ${\cal R}$
 - Gaussian noise with variance $\sigma^2 = O(\log(1/\delta)/\epsilon^2)$
 - Smaller ϵ , δ , stronger privacy but worse regret
- O Privacy vs Regret. [Zheng et al. 2020] shows that

Regret
$$\tilde{o}\left(\frac{T^{3/4}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under local (ϵ, δ) -DP*

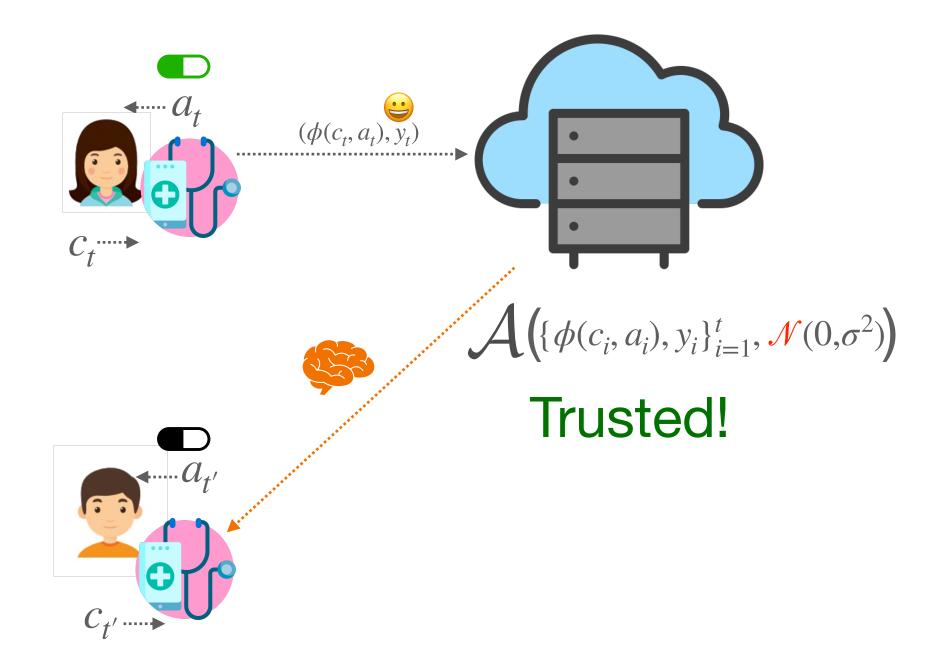




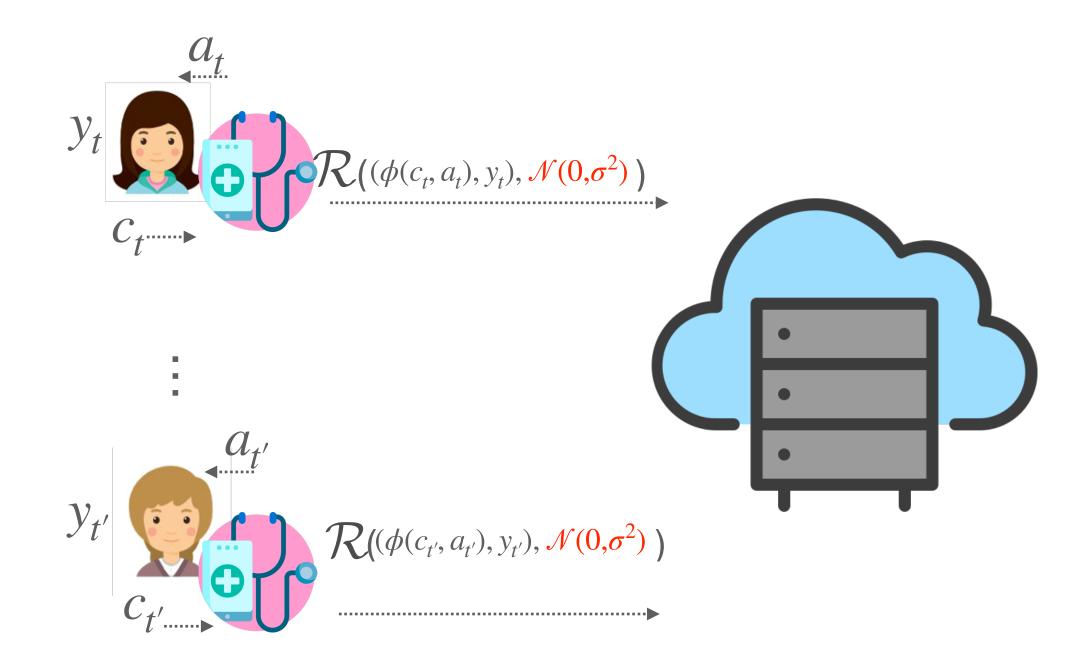


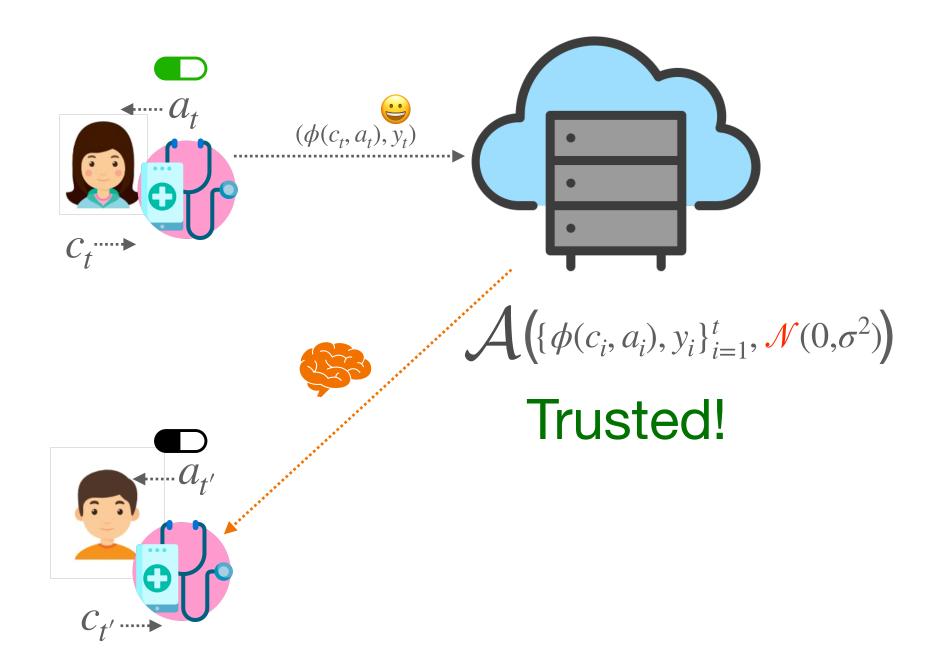


Regret
$$\tilde{O}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP

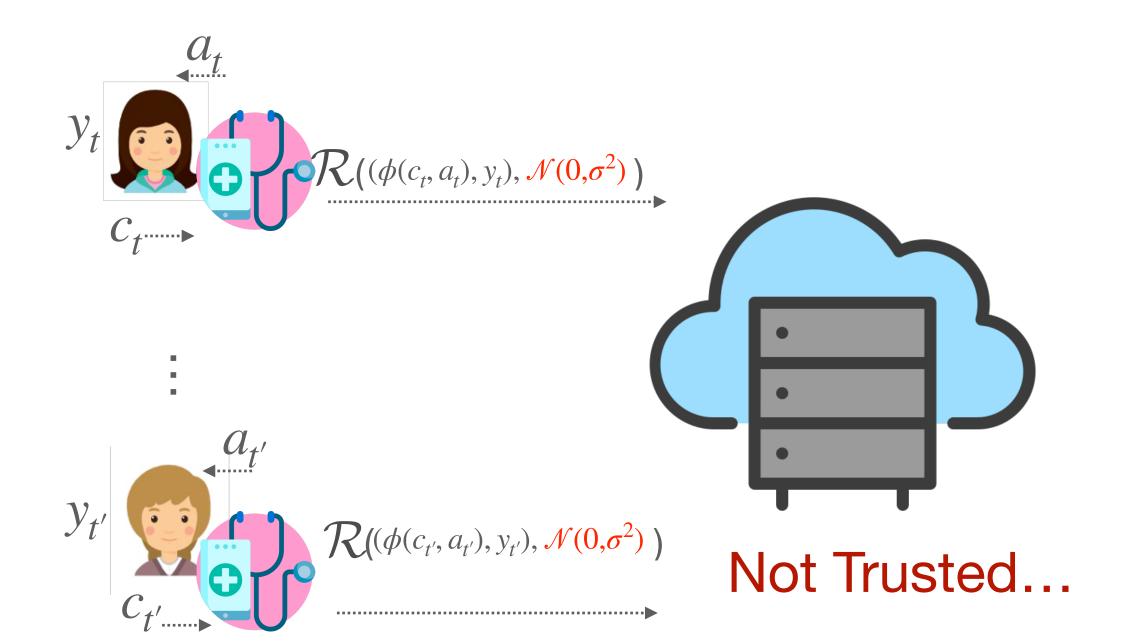


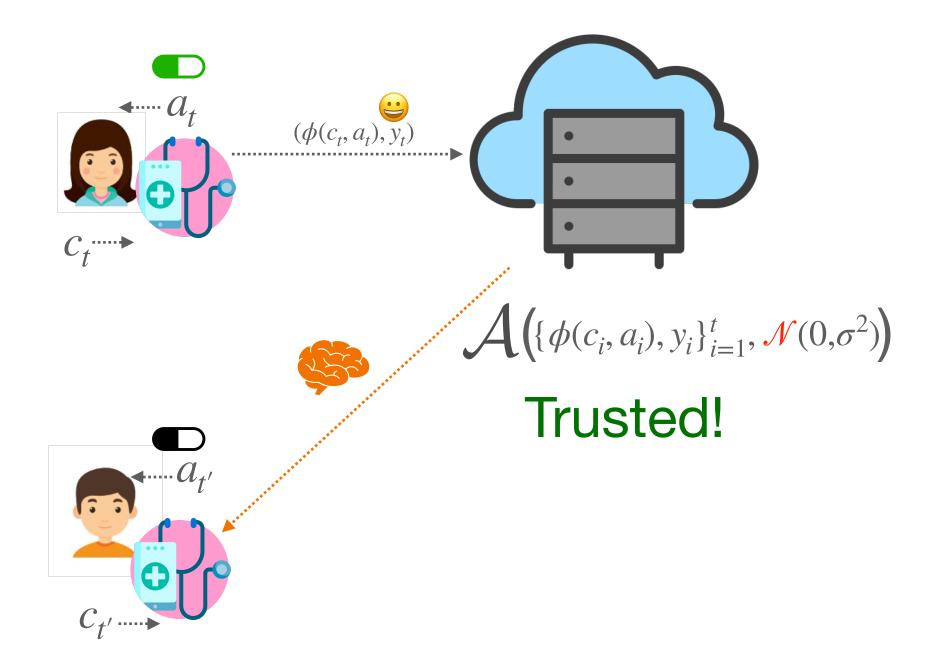
Regret
$$\tilde{o}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP



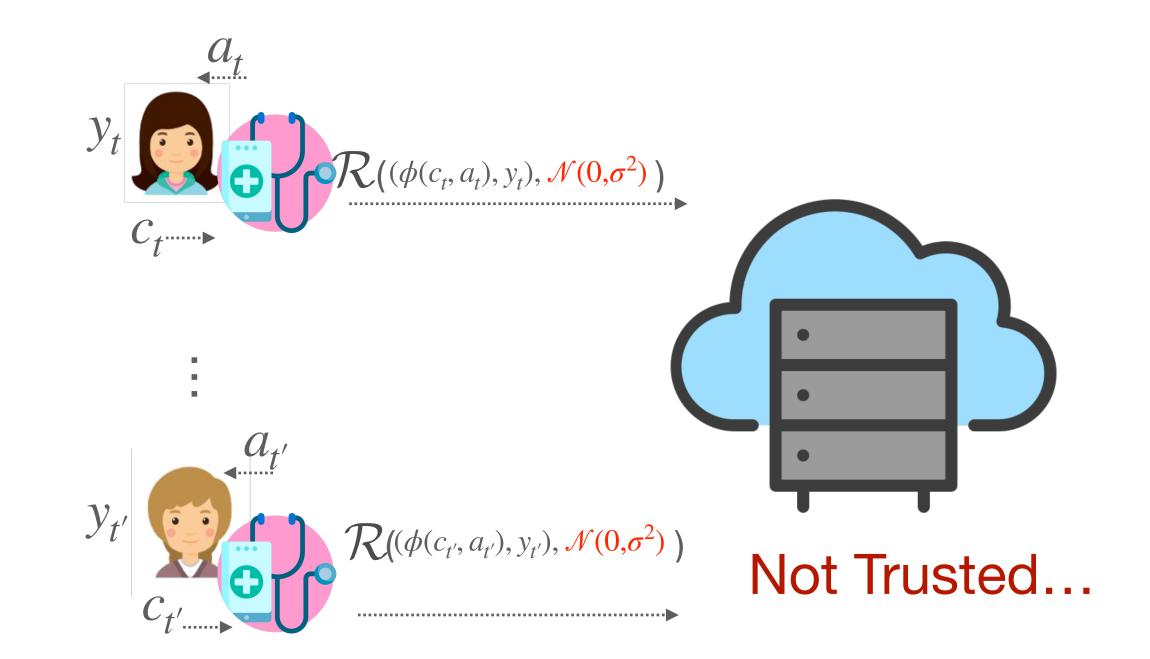


Regret
$$\tilde{o}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP

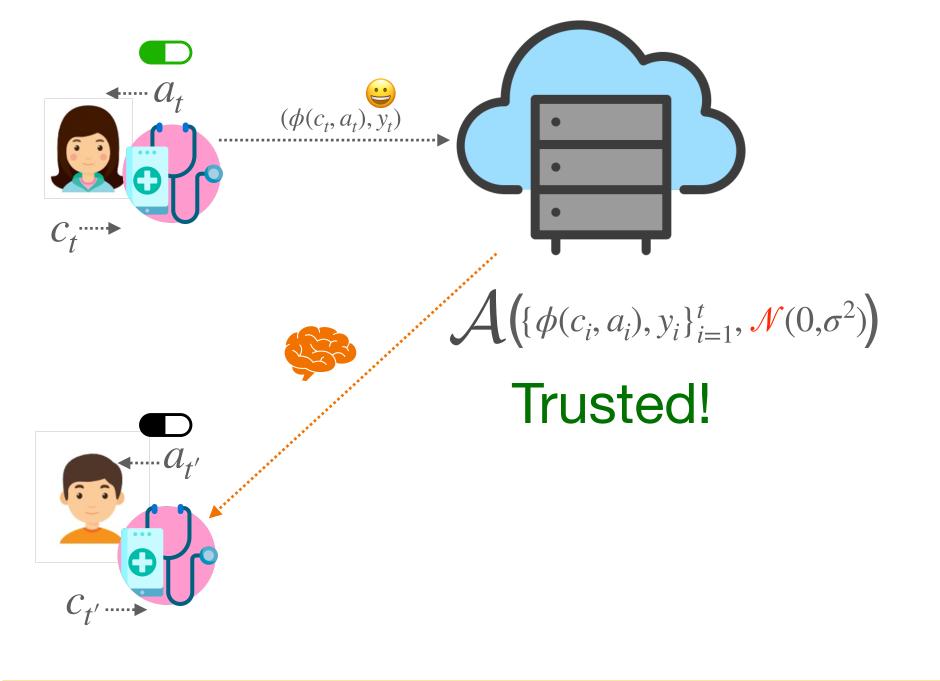




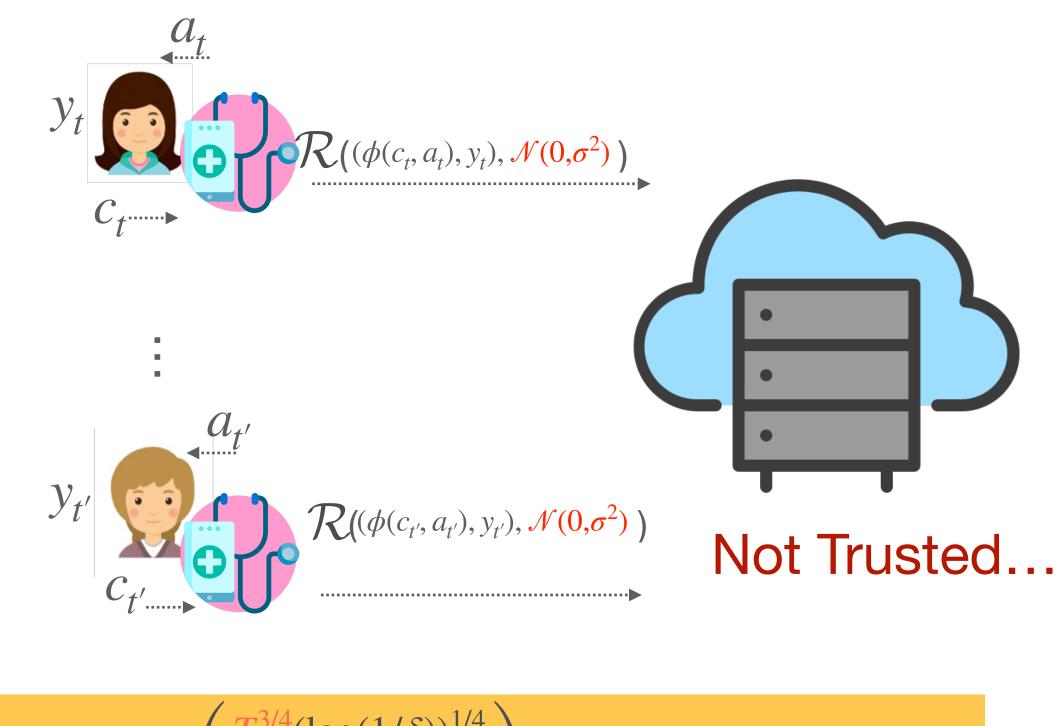
Regret
$$\tilde{O}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP



Regret
$$\tilde{O}\left(\frac{T^{3/4}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under local (ϵ, δ) -DP

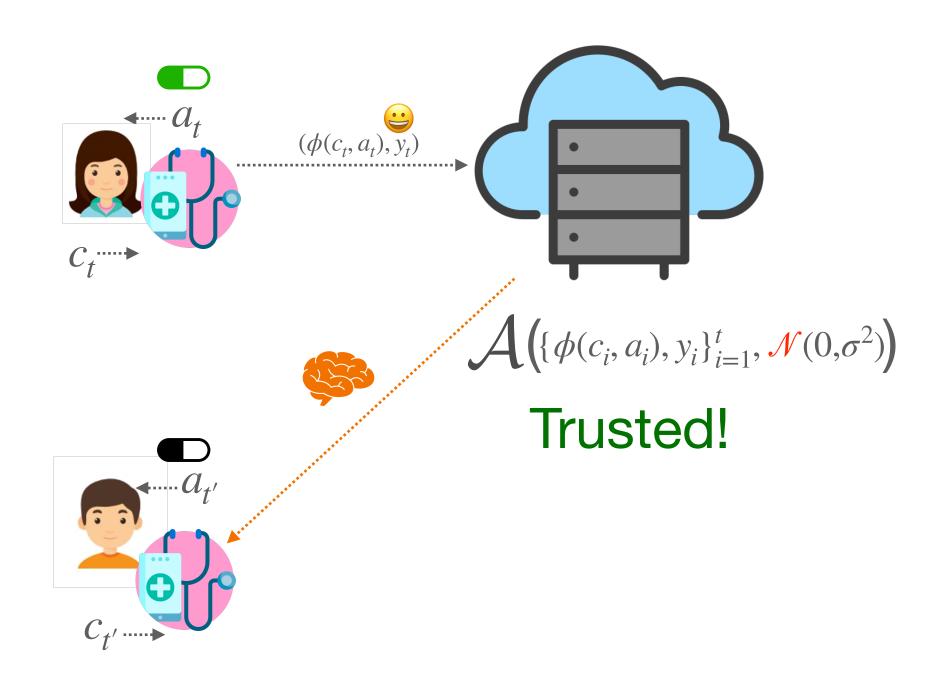


Regret
$$\tilde{o}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP

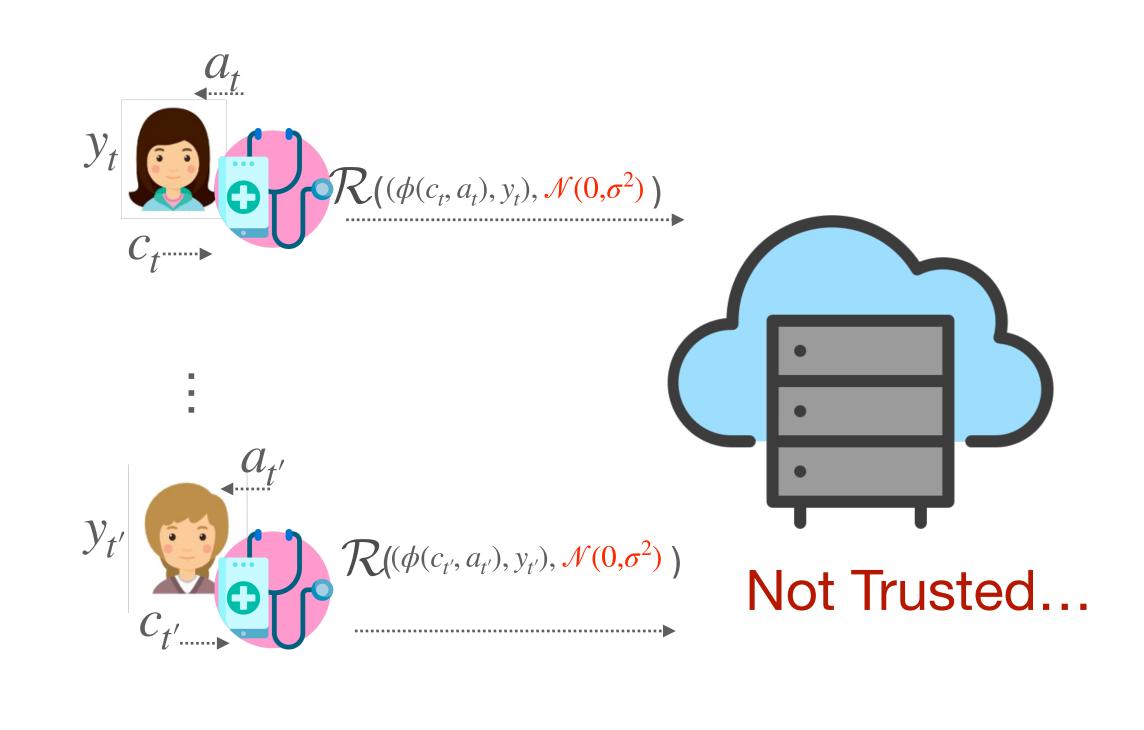


Regret
$$\tilde{O}\left(\frac{T^{3/4}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under local (ϵ, δ) -DP

Can one achieve a better regret even without a trusted server?



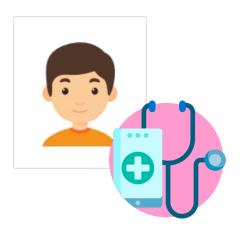
Regret
$$\tilde{o}\left(\frac{\sqrt{T}(\log(1/\delta))^{1/4}}{\sqrt{\epsilon}}\right)$$
 under central (ϵ, δ) -DP



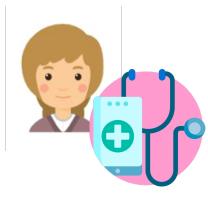
 $\left(\frac{T^{3/4}(\log(1/\delta))^{1/4}}{\Gamma}\right)$ under local (ϵ, δ) -DP

Can one achieve a better regret even without a trusted server?

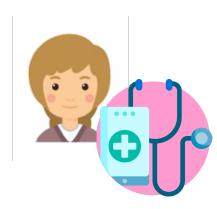
Contribution

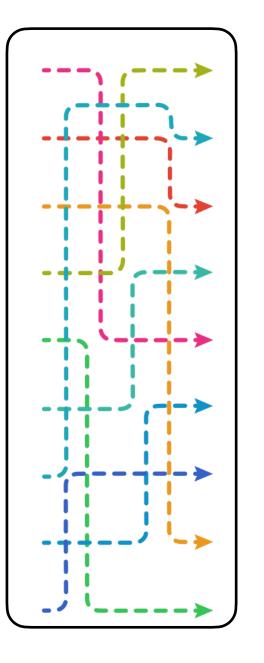


:



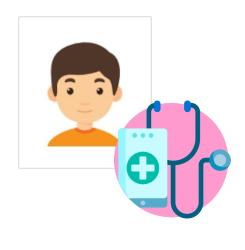
Not Trusted...



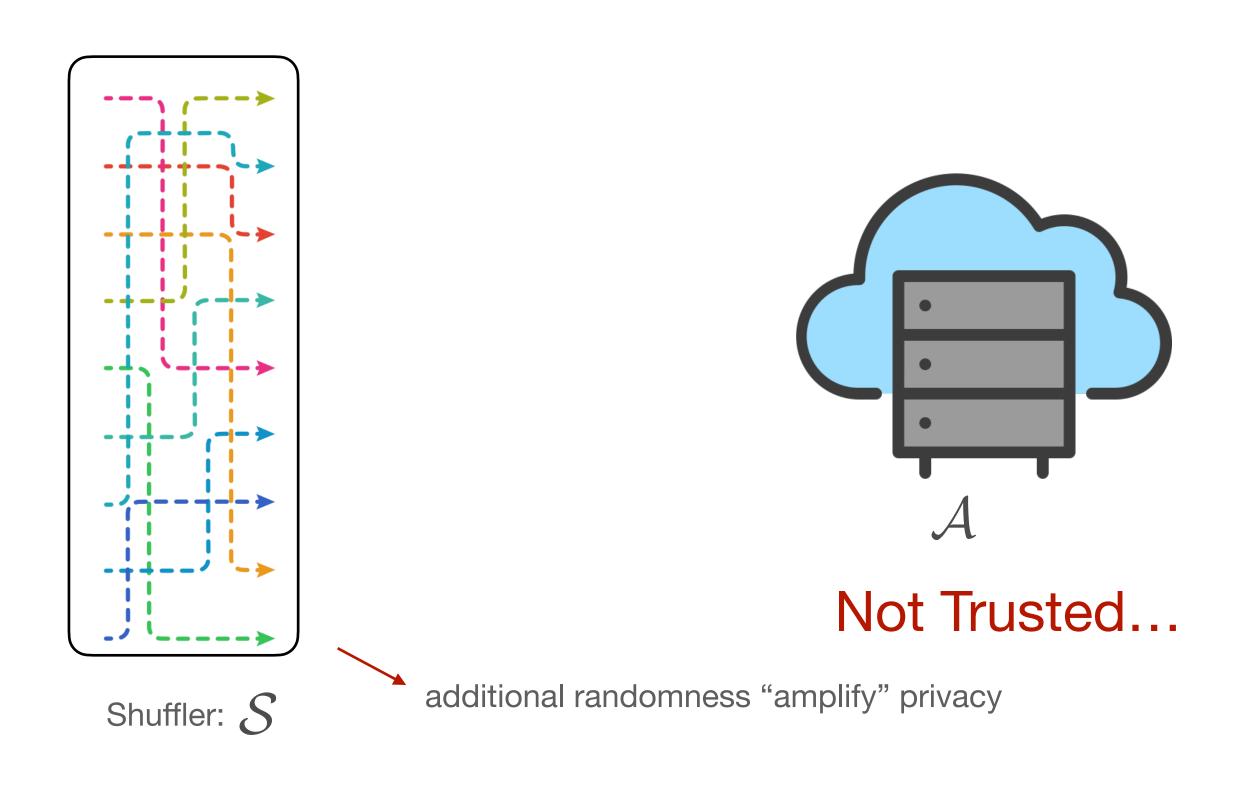


Shuffler: ${\cal S}$

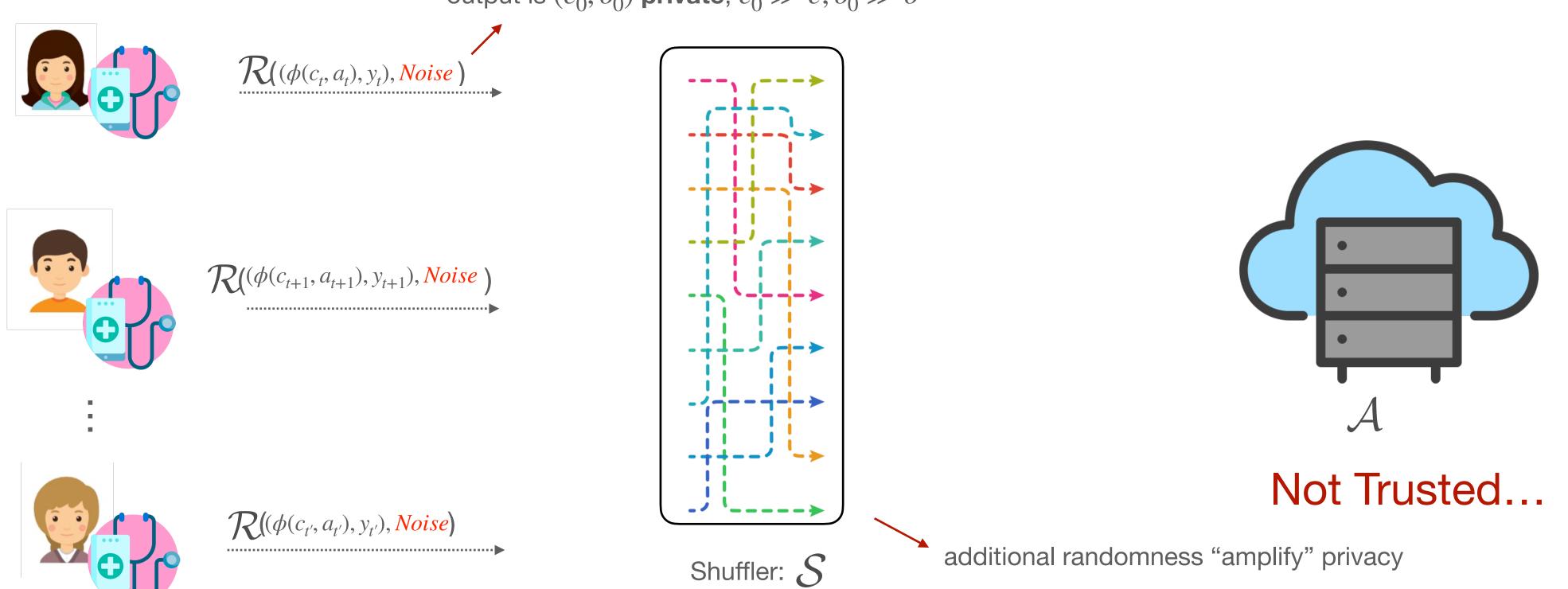
Not Trusted...



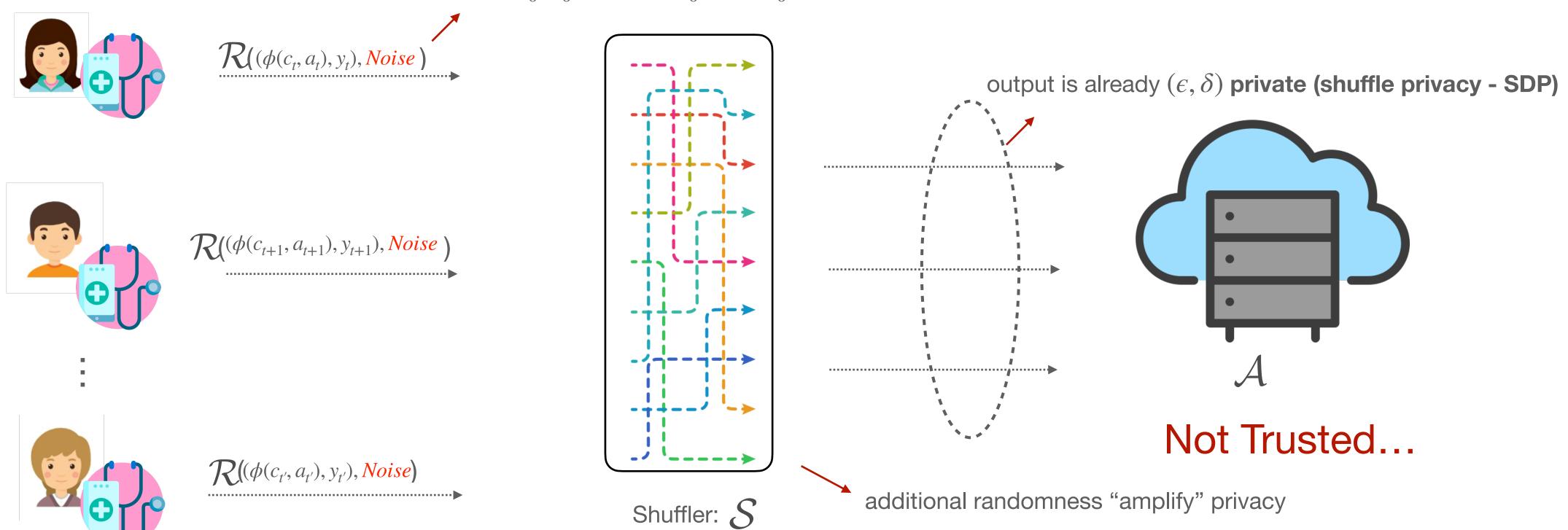
:

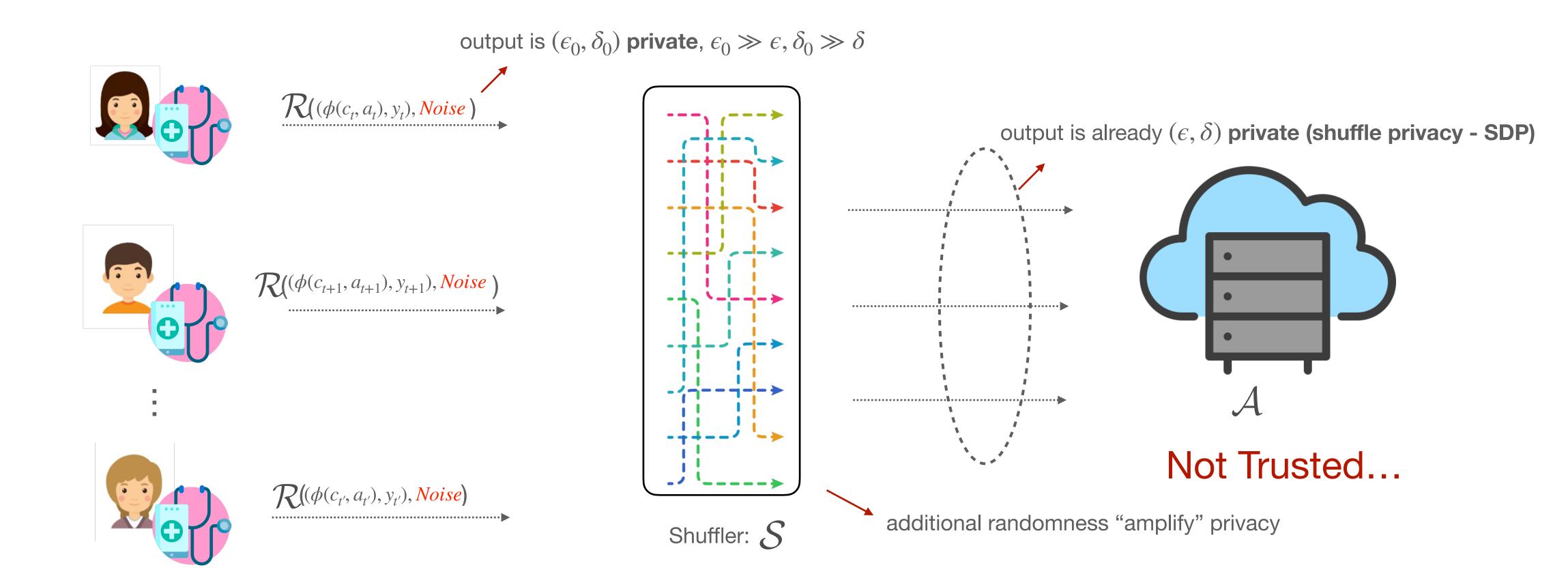


output is (ϵ_0, δ_0) private, $\epsilon_0 \gg \epsilon, \delta_0 \gg \delta$

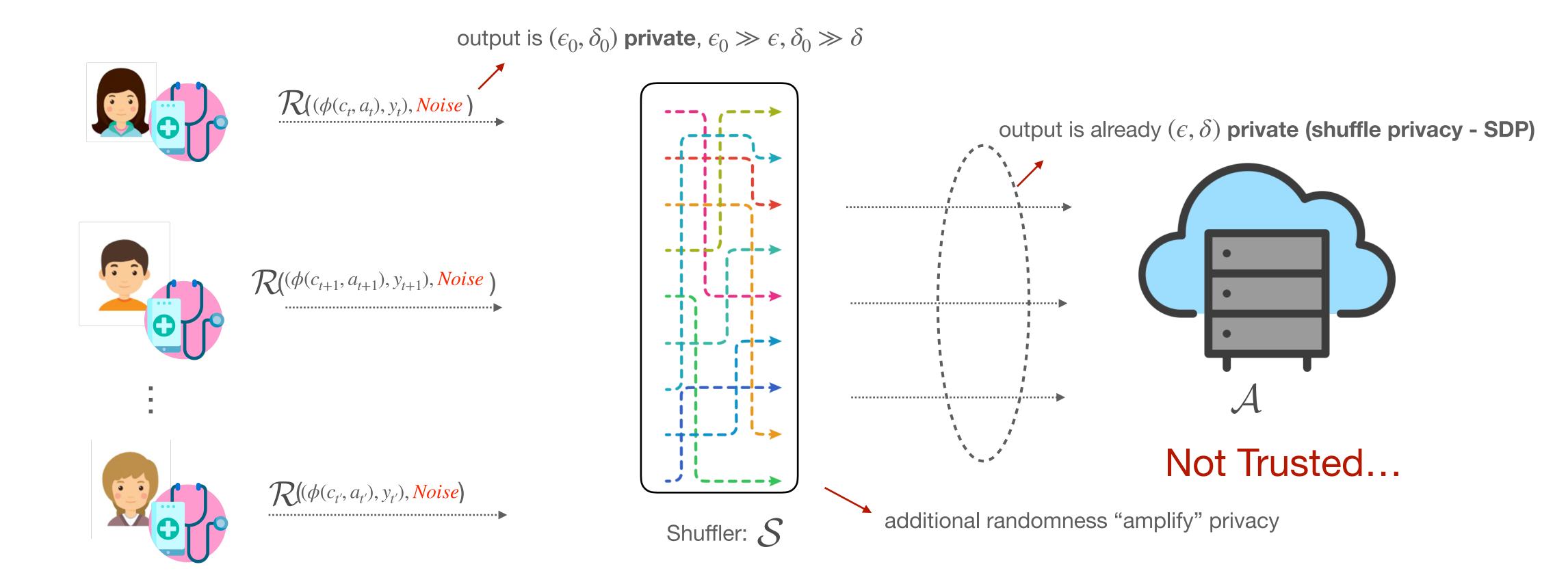


output is (ϵ_0, δ_0) private, $\epsilon_0 \gg \epsilon, \delta_0 \gg \delta$

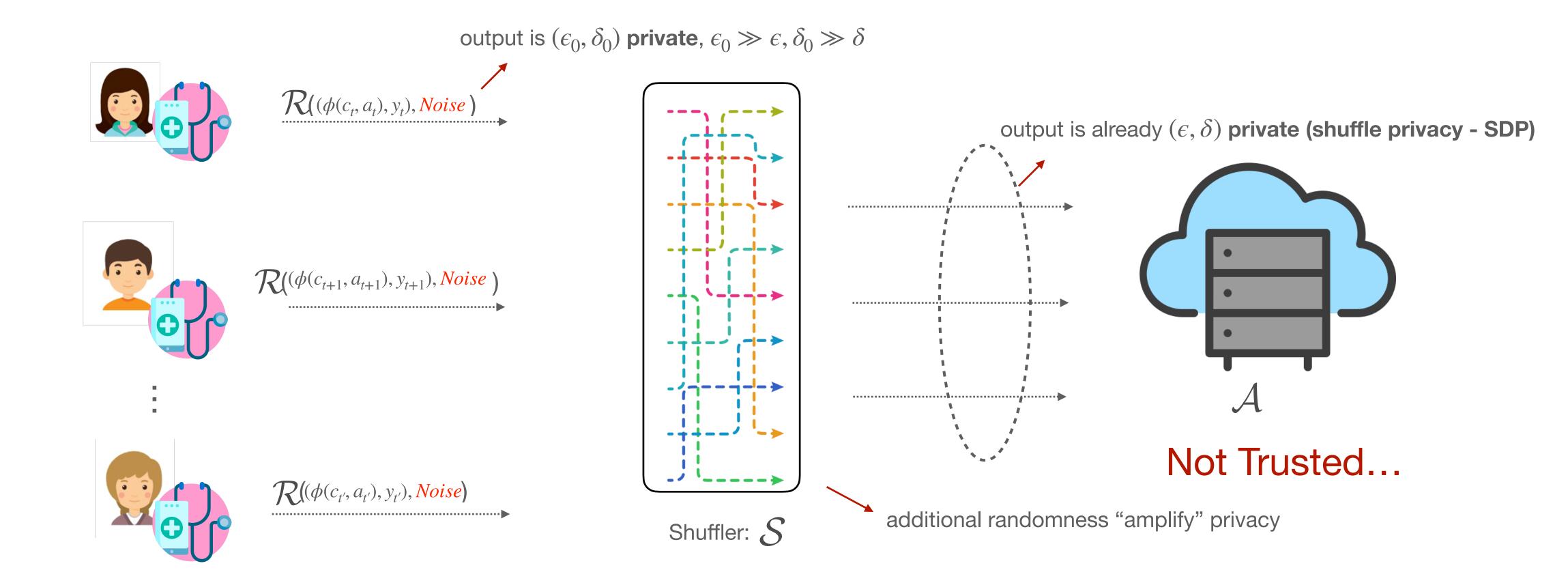




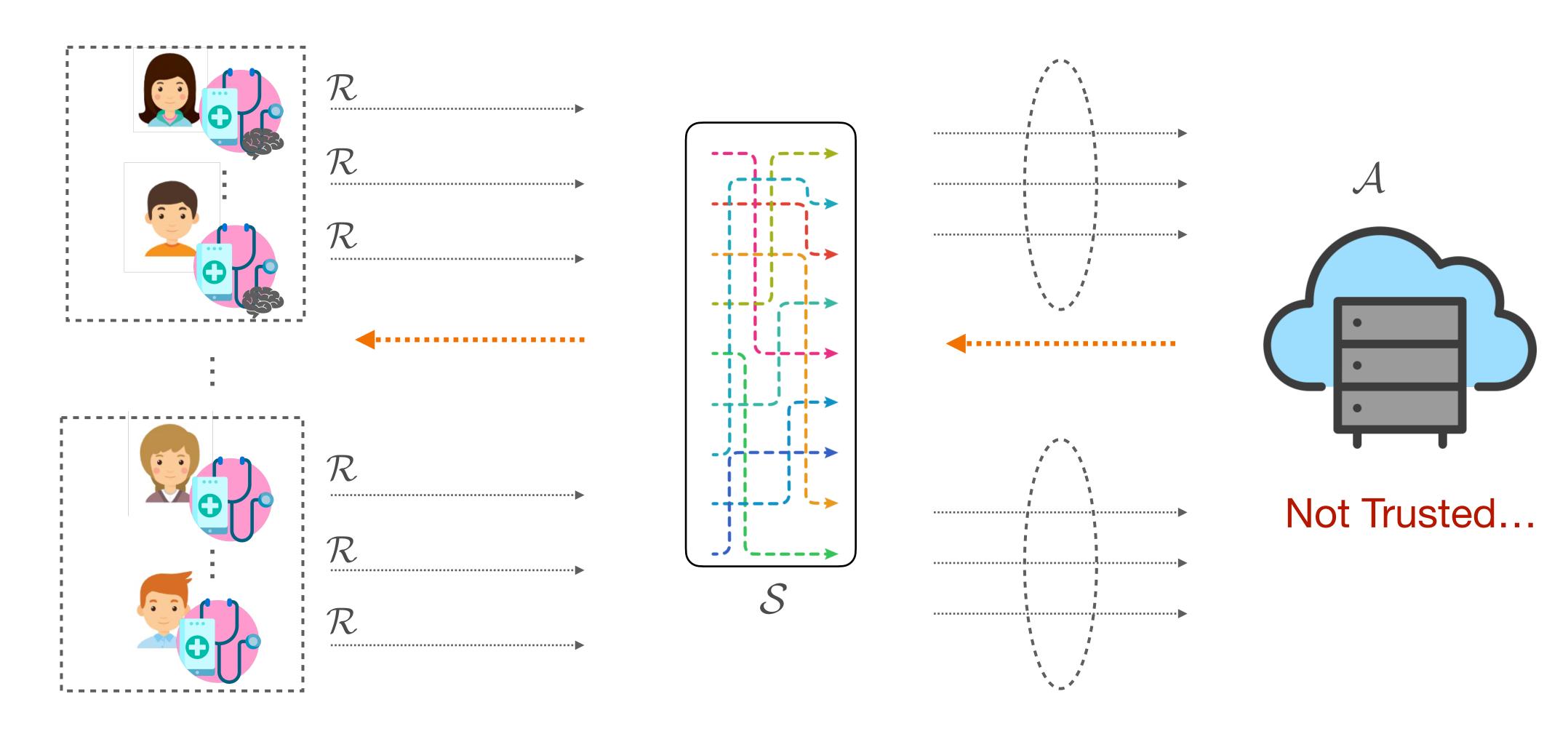
1. Propose a generic private LCB algorithm with black-box protocol $\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$

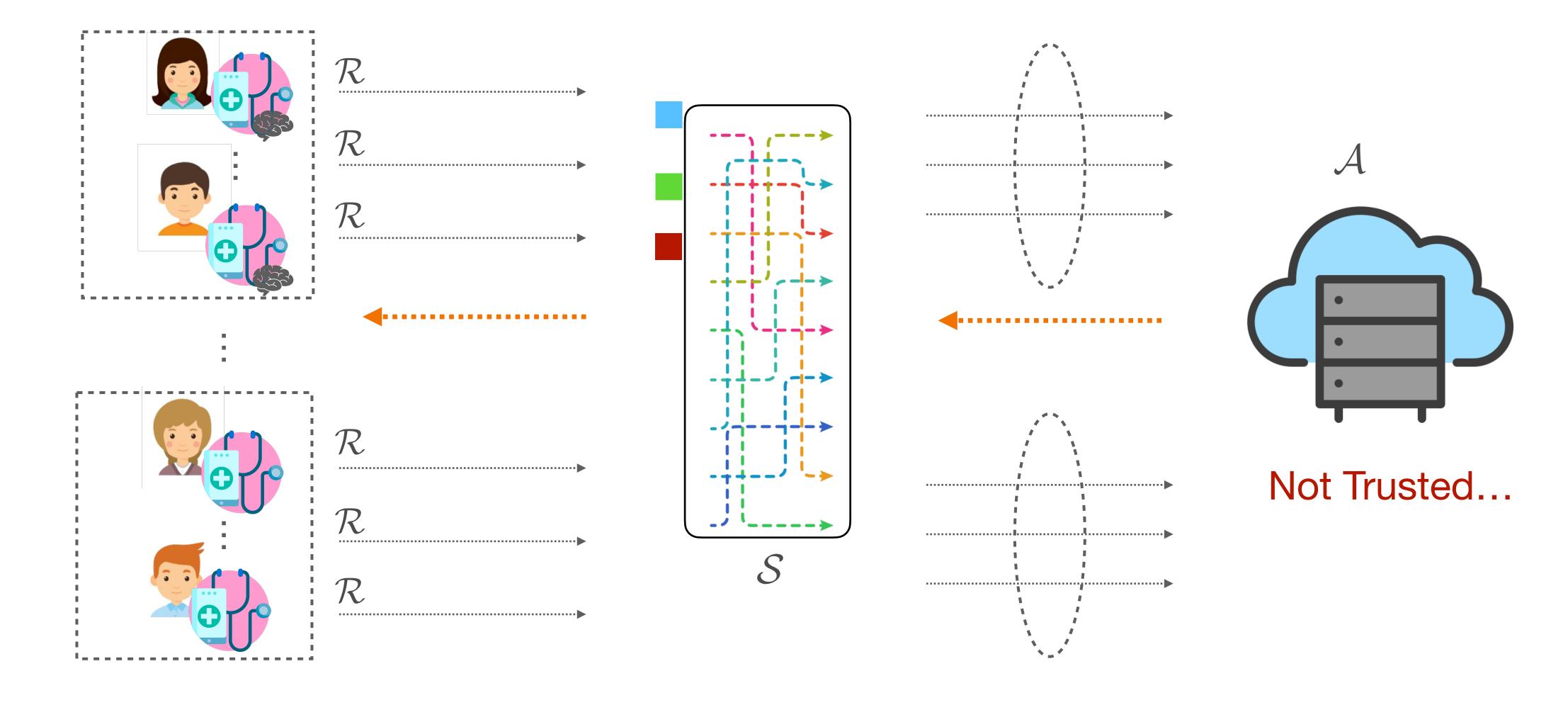


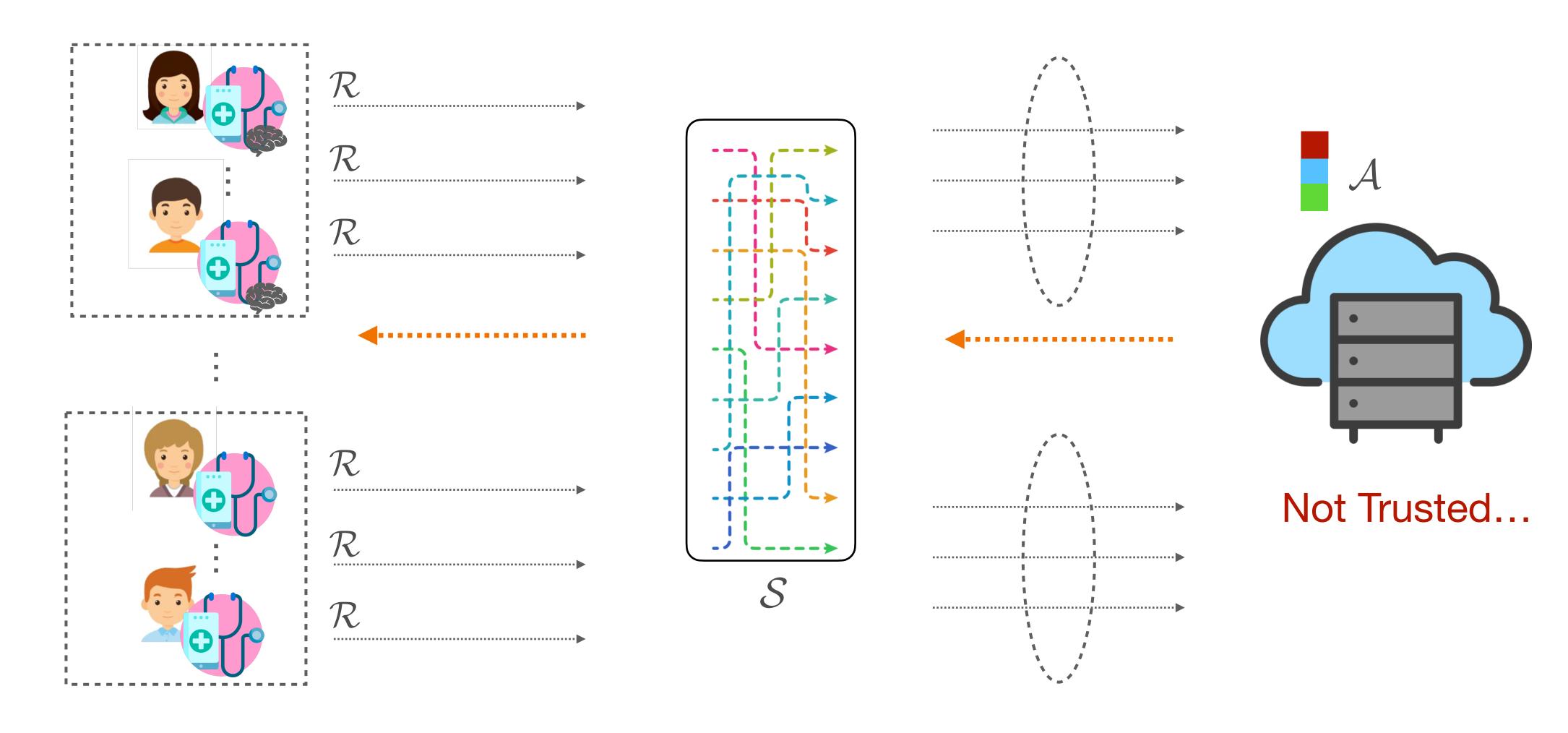
- 1. Propose a generic private LCB algorithm with black-box protocol $\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$
- 2. Two instantiations of ${\mathcal P}$ guarantee shuffle privacy with regret $ilde{O}(T^{3/5})$

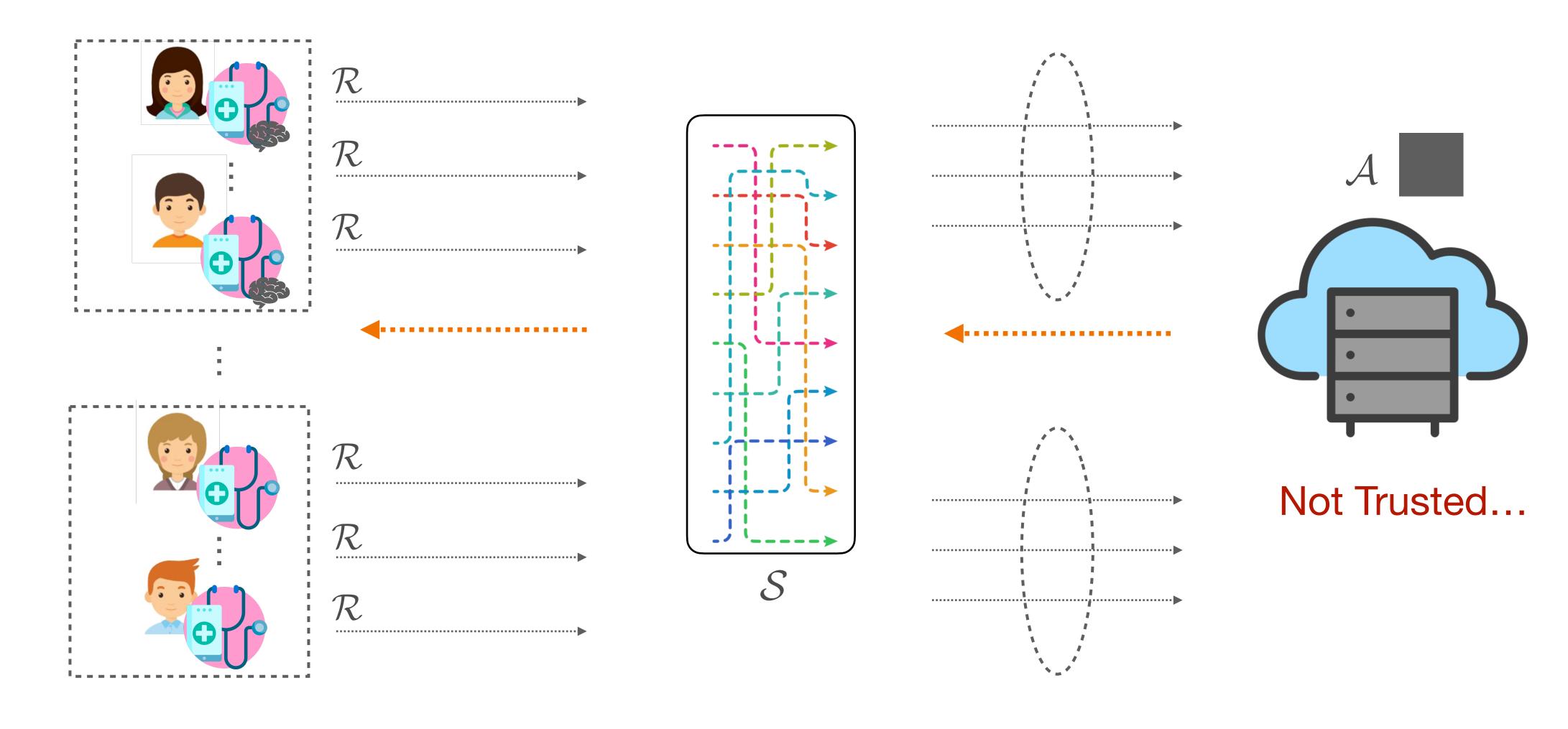


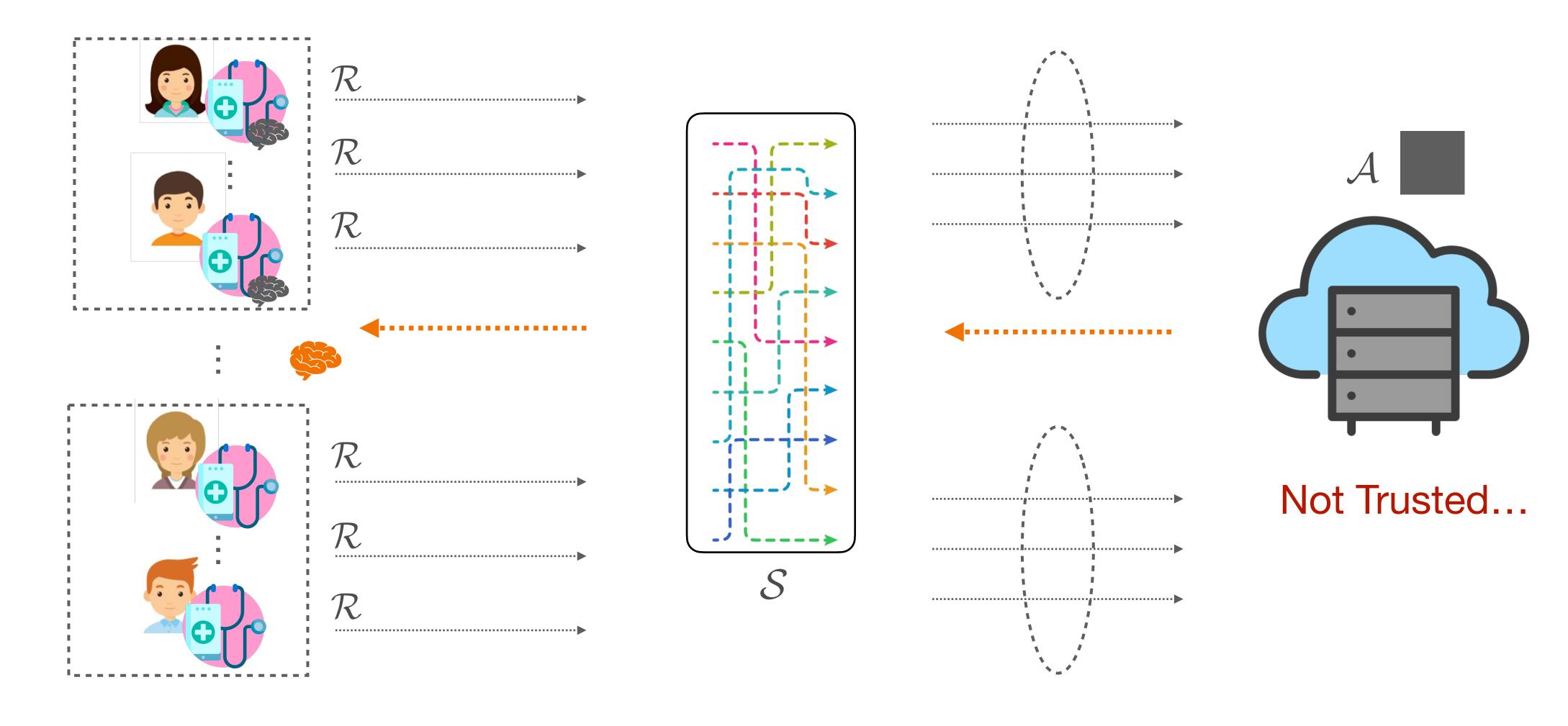
- 1. Propose a generic private LCB algorithm with black-box protocol $\mathcal{P} = (\mathcal{R}, \mathcal{S}, \mathcal{A})$
- 2. Two instantiations of $\mathcal P$ guarantee shuffle privacy with regret $\tilde O(T^{3/5})$
- 3. For the case of returning users, our regret can **match** the one under central model, i.e, $\tilde{O}(T^{2/3})$

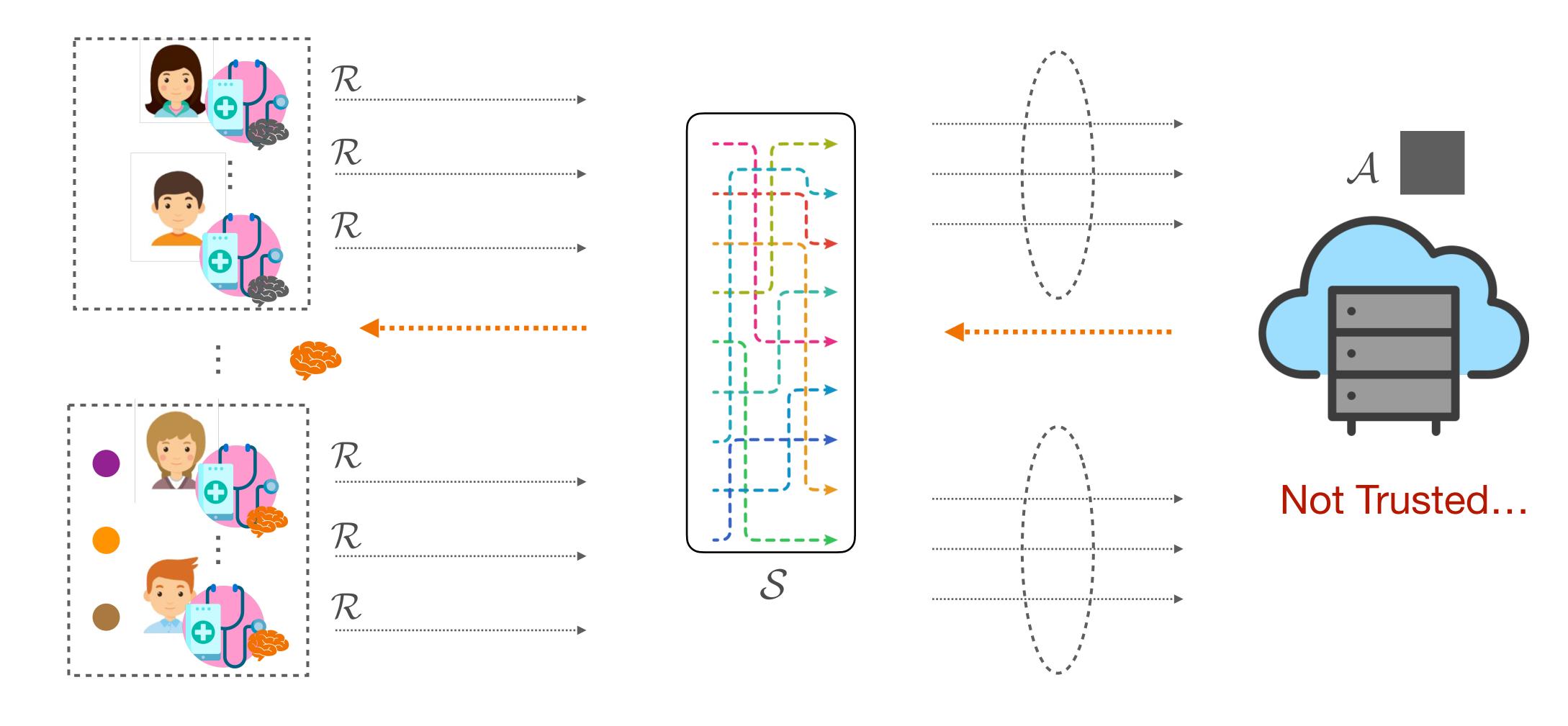




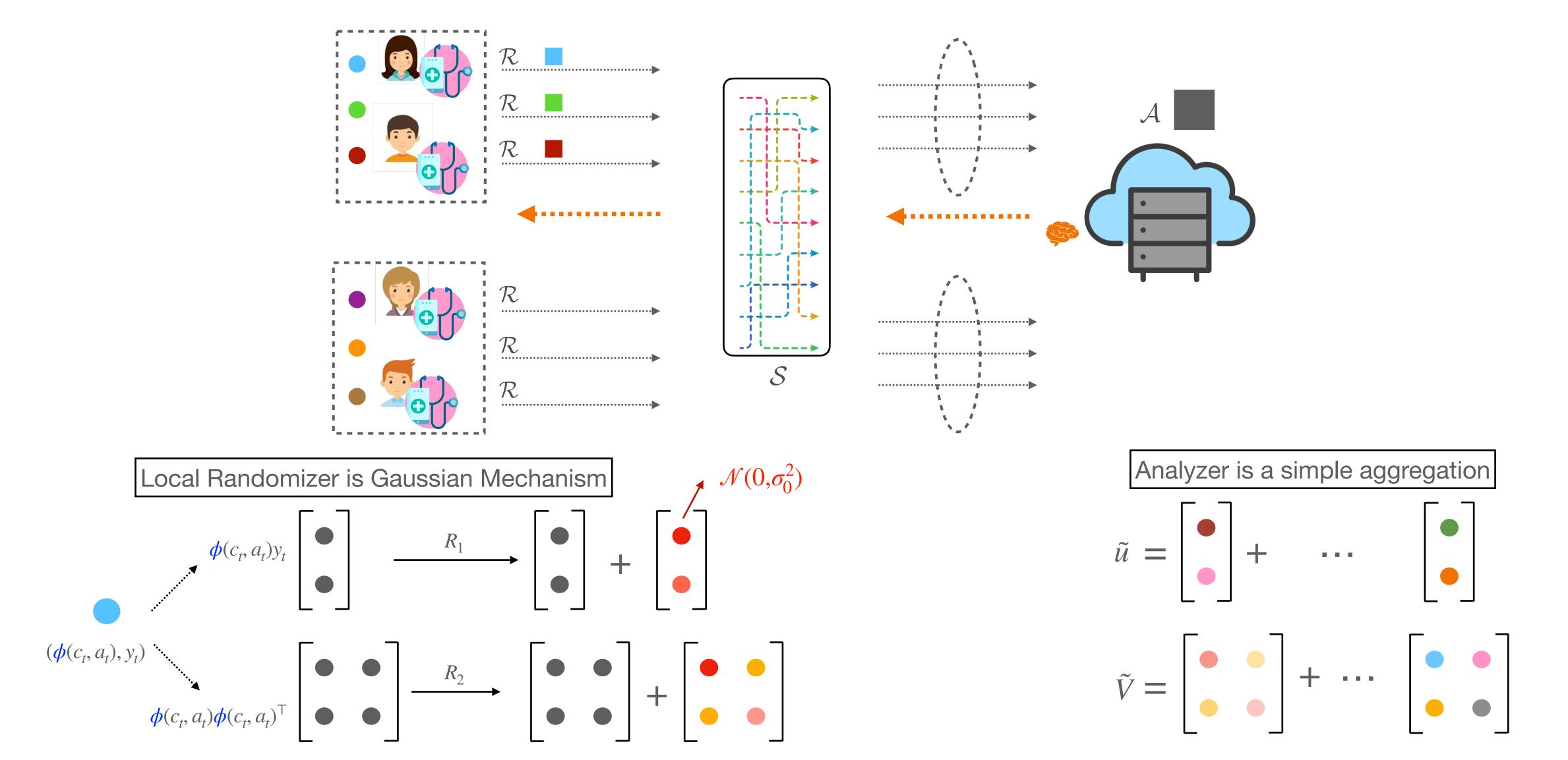




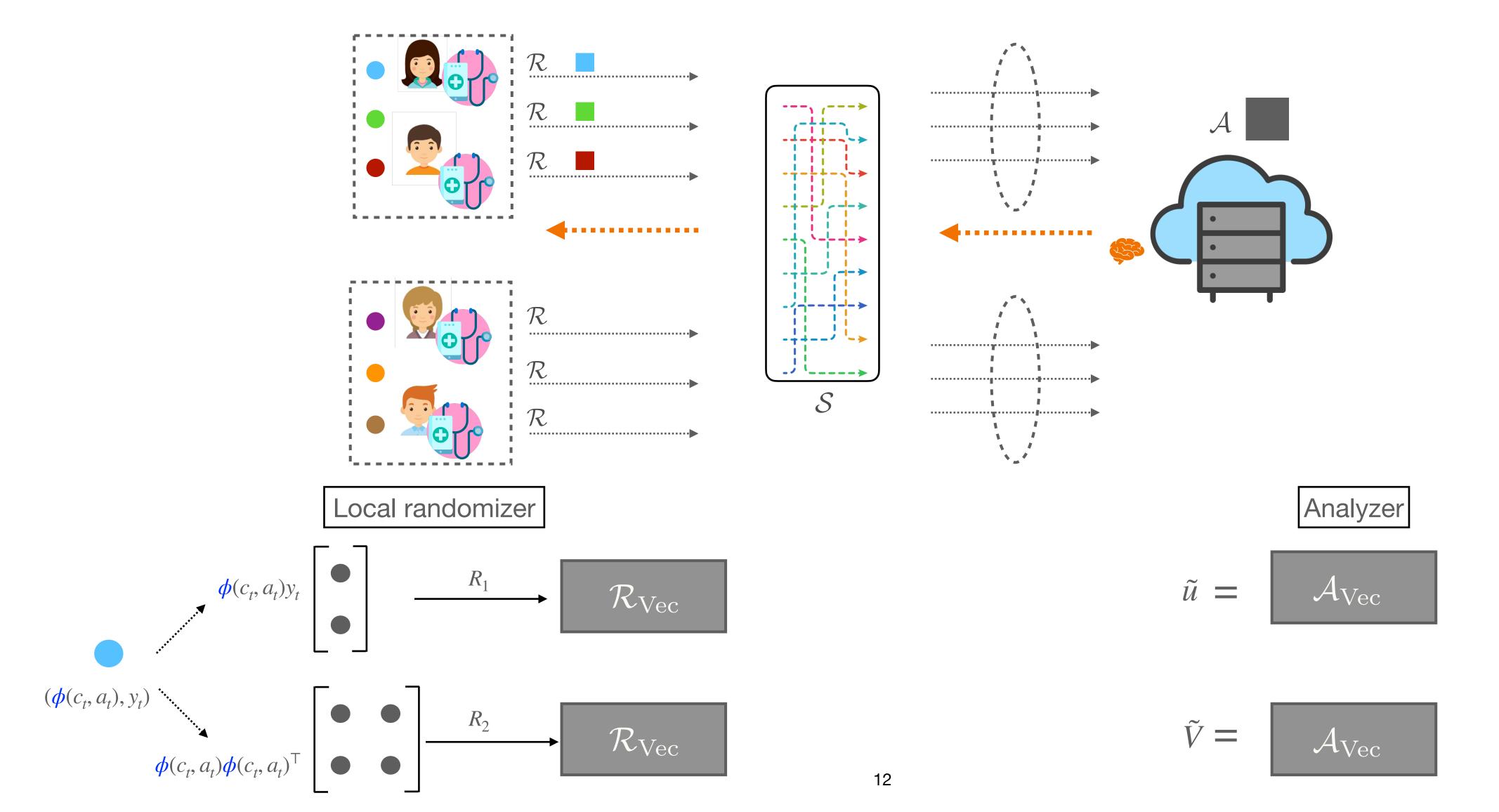




P1: Amplification of Gaussian Mechanism



P2: Vector Sum for LCB



Applications

Lemma

$$Reg(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

Applications

Lemma

Let noise assumption hold. Our generic algorithm satisfies a high probability regret bound

$$Reg(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

° SDP via LDP amplification — $\sigma^2 \approx O(T/(\epsilon^2 B))$

Applications

Lemma

$$Reg(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

- ° SDP via LDP amplification $\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each user's noise is Gaussian with variance $\tilde{O}(1/(\epsilon^2 B))$ and a total of T such noise

Applications

Lemma

$$Reg(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

- ° SDP via LDP amplification $\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each user's noise is Gaussian with variance $\tilde{O}(1/(\epsilon^2 B))$ and a total of T such noise
- ° SDP via Vector sum $-\sigma^2 \approx O(T/(\epsilon^2 B))$

Applications

Lemma

$$Reg(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

- ° SDP via LDP amplification $\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each user's noise is Gaussian with variance $\tilde{O}(1/(\epsilon^2 B))$ and a total of T such noise
- ° SDP via Vector sum $-\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each batch is sub-Gaussian noise with variance $\tilde{O}(1/\epsilon^2)$ and a total of M=T/B such noise

Applications

Lemma

$$Reg(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

- ° SDP via LDP amplification $\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each user's noise is Gaussian with variance $\tilde{O}(1/(\epsilon^2 B))$ and a total of T such noise
- ° SDP via Vector sum $-\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each batch is sub-Gaussian noise with variance $\tilde{O}(1/\epsilon^2)$ and a total of M=T/B such noise
- ° Recover standard private bounds when B=1 Central model: $\sigma^2 \approx \log T/\epsilon^2$ and Local model: $\sigma^2 \approx T/\epsilon^2$

Applications

Lemma

$$Reg(T) = \tilde{O}\left(dB + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

- ° SDP via LDP amplification $\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each user's noise is Gaussian with variance $\tilde{O}(1/(\epsilon^2 B))$ and a total of T such noise
- ° SDP via Vector sum $-\sigma^2 \approx O(T/(\epsilon^2 B))$
 - Each batch is sub-Gaussian noise with variance $\tilde{O}(1/\epsilon^2)$ and a total of M=T/B such noise
- ° Recover standard private bounds when B=1 Central model: $\sigma^2 \approx \log T/\epsilon^2$ and Local model: $\sigma^2 \approx T/\epsilon^2$
- Batched central and local models ... improve non-private batch LinUCB...

Returning Users

Guarantees

Lemma

Let noise assumption hold. Our generic algorithm satisfies a high probability regret bound

$$Reg(T) = \tilde{O}\left(dT/M + d\sqrt{T} + \sqrt{\sigma T}d^{3/4}\right)$$

- ° Shuffle model scale ϵ by $1/\sqrt{M}$ for (ϵ, δ) -SDP
 - As a result, total noise changes from $\sigma^2 \approx O(M/\epsilon^2)$ to $\sigma^2 \approx O(M^2/\epsilon^2)$
- ° Central model scale ϵ by $1/M_0$ for (ϵ, δ) -DP in the central model
 - As a result, total noise changes from $\sigma^2 \approx O(\log T/\epsilon^2)$ to $\sigma^2 \approx O(M_0^2 \log T/\epsilon^2)$

If $M=M_0=T^{1/3}$, both models have the same regret $\tilde{O}(T^{2/3})$!

• Can we close the gap?

- Can we close the gap?
 - What's the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?

• Can we close the gap?

- What's the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?
- Or, can one further improve $O(T^{3/5})$ in the shuffle model?

- Can we close the gap?
 - What's the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?
 - Or, can one further improve $O(T^{3/5})$ in the shuffle model?
- Can we achieve pure DP in all three models?

• Can we close the gap?

- What's the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?
- Or, can one further improve $O(T^{3/5})$ in the shuffle model?

• Can we achieve pure DP in all three models?

• The key challenge is a non-trivial matrix concentration bound with sub-exponential tails

• Can we close the gap?

- What's the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?
- Or, can one further improve $O(T^{3/5})$ in the shuffle model?

• Can we achieve pure DP in all three models?

- The key challenge is a non-trivial matrix concentration bound with sub-exponential tails
- For shuffle model, additional care is required, see our recent work [CZ'22 Distributed DP in MAB]

• Can we close the gap?

- What's the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?
- Or, can one further improve $O(T^{3/5})$ in the shuffle model?

• Can we achieve pure DP in all three models?

- The key challenge is a non-trivial matrix concentration bound with sub-exponential tails
- For shuffle model, additional care is required, see our recent work [CZ'22 Distributed DP in MAB]
- Can we do adaptive batch schedule (i.e., rarely-switching) in private case?

• Can we close the gap?

- What's the lower bound for local model? i.e., Can $O(T^{3/4})$ be improved?
- Or, can one further improve $O(T^{3/5})$ in the shuffle model?

• Can we achieve pure DP in all three models?

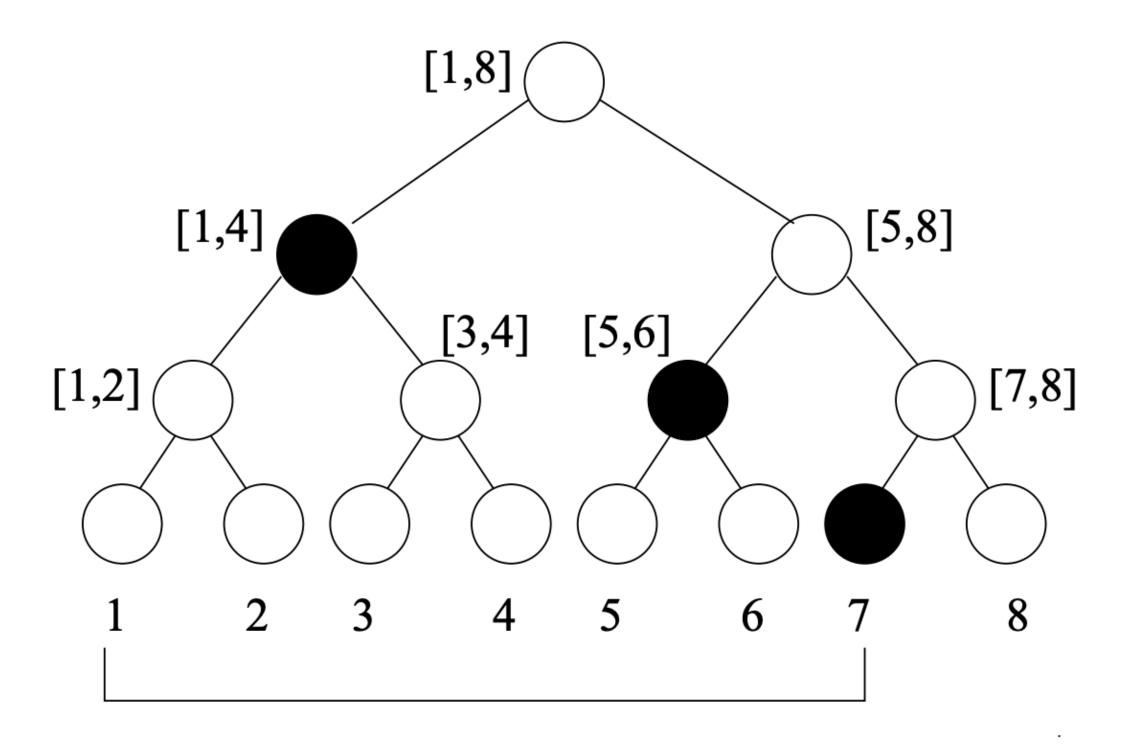
- The key challenge is a non-trivial matrix concentration bound with sub-exponential tails
- For shuffle model, additional care is required, see our recent work [CZ'22 Distributed DP in MAB]

Can we do adaptive batch schedule (i.e., rarely-switching) in private case?

• The key challenge is that standard determinant trick fails, ($V_t \ge V_{\tau_t}$, where $\tau_t < t$ is the recent update time)

Thank you!

Backup



(b) The sum of time steps 1 through 7 can be obtained by adding the p-sums corresponding to the black nodes.