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Motivation

Consider input x = (x1,x2,- -+ ,xp) and output y, we aim to build
interpretable additive Gaussian Process (GP) model f of the form

y="f(x)+e
where € ~ N(0,0?) and

f(x) = falx1) + falx2) + - + fia(x1, x2) + - -+ + f2._p(x1, X2, - - Xp)



Is High-Dimensional Representation Really Necessary?
On an 8-dimensional regression problem (Pumadyn), GP with
Orthogonal Additive Kernel (OAK) only requires

» two 1-dimensional main effect and
» one 2-dimensional interaction effect
for competitive performance.
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Figure: Visualization of the decomposed functions with highest Sobol
indices for the pumadyn dataset. Over 99% of the variance can be
explained with only these three terms.



Why it Appears to be High-Dimensional? — Orthogonality

Problem: If

f(x1,x2) = fi(x1) + fia(x1, x2), (1)

then fi + 6, fio — § are correct decompositions for any value of §
(Martens, 2019).



Why it Appears to be High-Dimensional? — Orthogonality

f(x1,x0) = X2 — 2x3 + cos(3xy) sin(5x2)
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Figure: Illustration of the non-identifiability of the additive GP model in
Duvenaud et al. (2011) on the two-dimensional problem. Top row:

additive GP model; bottom row: OAK model.



How to Circumvent it?

We can get low-dimensional representation of
y = flx) + L)+ + fia(xi, x2) + -+ - + f2_p(x1, x2, - xp)

with
» Orthogonality Constraints (Durrande et al., 2012)
» Scalability for Additive Models (Duvenaud et al., 2011)
» Sobol Index as Measure of Importance (Owen, 2014)



Constrained Kernel

Denote the density of input x; with p(x;) and kernel of f; with k;,
we enforce orthogonality constraints:

[ fa)ptxas =0 i 3)
/ f(3,5)p(x))db; = O Vi, j (4)
(5)

— £~ GP(0, k).
If

» p(x;) is uniform, (mixture) of Gaussian or approximated using
empirical dsitribution

> base kernel k; is squared exponential kernel for continuous
feature or coregional kernel for categorical feature

then k; is analytic and can be easily plugged in popular GP code.



Orthogonal Additive Kernel (OAK)

y = fi(x1) + fo(x2) + - - + fia(x1, %) + - - + fi2._p(x1, X2, - - - XD)

where
fi(x;) has kernel o2k;(x;) (6)
fii(xi, x;) has kernel a%l?,-(x,-)/;j(@) (7)
f;'J'k(X,', Xj, Xk) has kernel J%l;;(x,-)lzj(@)/;k(xk) (8)
(9)

» Newton-Girard trick allows for polynomial time complexity
O(D?)



FANOVA Decomposition and Sobol Indices

» OAK construction leads to the FANOVA decomposition:

fu(x):/_ < fov>dPx_) (10)

vCu
where fj(x) = E[f(x)], x_, denotes x excluding x, and P(x)
denotes the distribution of x.
» The orthogonality of OAK leads to the ANOVA identity:

R:=V,[f(x)]= D Ru, (11)

uC[D]

where R, := V[f,(x)] is defined as the Sobol index for feature
set u.

» Sobol indices are analytic with OAK!



Experiments — Interpretability (SUSY)
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Experiments — Competitive Performance

Aggregation ‘ OAK  Linear SVGP SVM KNN GBM  AdaBoost MLP

Regression RMSE avg 0475  6.157 0478 0484 0518 0455 0581 0.445
median 0376 0736 0397 0419 0454 0343 0.580 0.361
avg rank 3583 6625 4083 4208 4958 3208 5750 3.583
avg -0.229 -0946 -0.295 -0.585 -0.638 -0.652 -0.730 -0.891
Regression Log Likelihood median 0.409 -1.096 -0.512 -0.609 -0.738 -0.671 -0.875 -0.471
avg rank 5.583 3625 5042 4833 3917 4292 3583 5.125
avg 0.872 0.835 0.859 0.857 0.836 0.870 0.859 0.863
Classification Accuracy median 0.898 0.832 0.864 0.850 0863 0900 0.892 0.873
avg rank 5569 4224 4741 4500 2983 5.224 4207 4.552
avg 0.267 -0.338 -0.291 -0.306 -0.899 -0.283 -0.459 -0.306
Classification Log Likelihood | median -0.280 -0.389 -0.307 -0.352 -1.088 -0.256 -0.584 -0.362
avg rank 5862 4276 5931 4690 2138 5379 2.897 4.828

Figure: Average results over 24 regression datasets shown in terms of test
RMSE and log likelihood (top two blocks). Average results over 29
classification datasets shown in terms of accuracy and log likelihood
(bottom two blocks).



Experiments — Parsimony
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Figure: AuC as a function of number of terms added ranked by their Sobol
indices for the SUSY experiments. Red solid lines and green dashed lines
represent test AuC and cumulative (normalized) Sobol respectively.



Future Work

» non-independent input features
» heteroscedastic noise

» Bayesian optimisation/experimental design

Come to our poster Hall E #728, Tue 19 Jul 6:30pm-8:30pm !
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