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Motivation

Consider input x = (x1, x2, · · · , xD) and output y, we aim to build
interpretable additive Gaussian Process (GP) model f of the form

y = f (x) + ε

where ε ∼ N (0, σ2) and

f (x) = f1(x1) + f2(x2) + · · ·+ f12(x1, x2) + · · ·+ f12...D(x1, x2, · · · xD)



Is High-Dimensional Representation Really Necessary?
On an 8-dimensional regression problem (Pumadyn), GP with
Orthogonal Additive Kernel (OAK) only requires
I two 1-dimensional main effect and
I one 2-dimensional interaction effect

for competitive performance.
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Figure: Visualization of the decomposed functions with highest Sobol
indices for the pumadyn dataset. Over 99% of the variance can be
explained with only these three terms.



Why it Appears to be High-Dimensional? — Orthogonality

Problem: If

f (x1, x2) = f1(x1) + f12(x1, x2), (1)

then f1 + δ, f12 − δ are correct decompositions for any value of δ
(Märtens, 2019).



Why it Appears to be High-Dimensional? — Orthogonality

f (x1, x2) = x21 − 2x2 + cos(3x1) sin(5x2) (2)
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Figure: Illustration of the non-identifiability of the additive GP model in
Duvenaud et al. (2011) on the two-dimensional problem. Top row:
additive GP model; bottom row: OAK model.



How to Circumvent it?

We can get low-dimensional representation of

y = f1(x1) + f2(x2) + · · ·+ f12(x1, x2) + · · ·+ f12...D(x1, x2, · · · xD)

with

I Orthogonality Constraints (Durrande et al., 2012)

I Scalability for Additive Models (Duvenaud et al., 2011)

I Sobol Index as Measure of Importance (Owen, 2014)



Constrained Kernel

Denote the density of input xi with p(xi ) and kernel of fi with ki ,
we enforce orthogonality constraints:∫

fi (xi )p(xi )dxi = 0 ∀i , (3)∫
fij(xi , xj)p(xi )dxi = 0 ∀i , j (4)

· · · (5)

=⇒ fi ∼ GP(0, k̃i ).

If

I p(xi ) is uniform, (mixture) of Gaussian or approximated using
empirical dsitribution

I base kernel ki is squared exponential kernel for continuous
feature or coregional kernel for categorical feature

then k̃i is analytic and can be easily plugged in popular GP code.



Orthogonal Additive Kernel (OAK)

y = f1(x1) + f2(x2) + · · ·+ f12(x1, x2) + · · ·+ f12...D(x1, x2, · · · xD)

where

fi (xi ) has kernel σ21 k̃i (xi ) (6)

fij(xi , xj) has kernel σ22 k̃i (xi )k̃j(xj) (7)

fijk(xi , xj , xk) has kernel σ23 k̃i (xi )k̃j(xj)k̃k(xk) (8)

· · · (9)

I Newton-Girard trick allows for polynomial time complexity
O(D2)



FANOVA Decomposition and Sobol Indices

I OAK construction leads to the FANOVA decomposition:

fu(x) =

∫
X−u

(
f (x)−

∑
v⊂u

fv (xv )

)
dP(x−u), (10)

where f∅(x) = E[f (x)], x−u denotes x excluding xu and P(x)
denotes the distribution of x.

I The orthogonality of OAK leads to the ANOVA identity:

R := Vx[f (x)] =
∑
u⊆[D]

Ru, (11)

where Ru := Vx[fu(x)] is defined as the Sobol index for feature
set u.

I Sobol indices are analytic with OAK!



Experiments – Interpretability (SUSY)
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Figure: Decomposition of top 10 important functions for SUSY dataset,
ranked by their Sobol indices.



Experiments – Competitive Performance

Figure: Average results over 24 regression datasets shown in terms of test
RMSE and log likelihood (top two blocks). Average results over 29
classification datasets shown in terms of accuracy and log likelihood
(bottom two blocks).



Experiments – Parsimony
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Figure: AuC as a function of number of terms added ranked by their Sobol
indices for the SUSY experiments. Red solid lines and green dashed lines
represent test AuC and cumulative (normalized) Sobol respectively.



Future Work

I non-independent input features

I heteroscedastic noise

I Bayesian optimisation/experimental design

Come to our poster Hall E #728, Tue 19 Jul 6:30pm-8:30pm !



References

Durrande, N., Ginsbourger, D., and Roustant, O. Additive covariance
kernels for high-dimensional Gaussian process modeling. In Annales de
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