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Motivation

GP bandits is the problem of optimizing a black-box function f by using derivative-free
queries guided by a GP surrogate model; where f is assumed to be in the RKHS:

max
x

f (x).

Function observations are typically subject to corruptions in the real-world, which are
not adequately captured by random noise alone:

1. Rare outliners - i.e. equipment failures,
2. Bad actors - i.e. malicious users.
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Related Work

In literature, methods primarily focused on proposing methods that defend against
the proposed uncertainty model to improve robustness for GP optimization:
I Presence of outliers,
I Random perturbations to sampled points,
I Adversarial perturbations to the final point / samples.

Minimal work studying the problem from an attacker’s perspective.

Our Goal

Examine from an attacker’s perspective, focusing on adversarial perturbations.
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Setup

At time t, with random Noise zt ∼ N (0, σ2), adversarial noise ct and budget C :

yt = f (xt) + ct + zt , where
n∑

t=1
|ct | ≤ C .

With various levels of knowledge available to the adversary:
1. Targeted Attack - make the player choose actions in a particular region Rtarget.
2. Untargeted Attack - make the player’s cumulative regret as high as possible.
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Theoretical Study

Theory applies1 to any algorithm that gets sublinear regret in non-corrupted setting.

f
f̃

∆

Rtarget

Theorem 1 (Rough Sketch)
Adversary performs an attack shifting the original function f to f̃ , with sufficient
conditions, resulting in linear regret with high probability.

1Also even in certain cases where the attacker doesn’t know f .
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Subtraction Attack (Known f )

Idea is to ‘swallow’ the peaks of the function f .

Set f̃ (x) = f (x)− h(x), where h:
I Subtraction Rnd - bump fn.
I Subtraction Sq - indicator fn.

Discussion:
1. Strong theoretical

guarantees2.
2. Requiring knowledge of f .
3. Difficult to construct h.

f

f̃

h(x)

Rtarget

f

f̃

h(x)

Rtarget

Subtraction Rnd (top) and Sq (bottom).

2Only for Subtraction Rnd; depending on the properties of h.
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Clipping Attack (Known f )

Idea is to ‘cut’ the rest of the function f off by ∆ from the peak in Rtarget.

Clipping Attack by setting:

f̃ (x) =
{
f (x) x ∈ Rtarget

min {f (x), f (x̃∗)−∆} x /∈ Rtarget,

Discussion:
1. Practical, easy to implement.
2. f̃ not in RKHS.

f

f̃

(x̃∗, f (x̃∗))

∆

Rtarget

Eric Han, Jonathan Scarlett Adversarial Attacks on Gaussian Process Bandits



8/10

Introduction
Adversarial Attacks on Gaussian Process Bandits

Attack Methods
Experiments and Results

Aggressive Subtraction Attack (Unknown f )

Idea is to subtract all points outside Rtarget by roughly the same value hmax.

Simplified Aggressive Subtraction,
without “transition region”:

f̃ (x) =
{
f (x) x ∈ Rtarget

f (x)− hmax x /∈ Rtarget.

Discussion:
1. Strong theoretical

guarantees3.

f

f̃

hmax

hmax

Rtarget

f

f̃

hmax

hmax

Rtarget

With “transition region” (top) and without (bottom).

3Only for Aggressive Subtraction with “transition region”.
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Results for Synthetic1D, Forrester1D, Levy-Hard1D
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I Clipping works consistently.
I Aggressive Subtraction works, but with higher cost.
I Subtraction Rnd and Subtraction Sq is ‘in between’.
I Subtraction Rnd tends to narrowly beat Subtraction Sq (due to smooth h(x)).
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Key Contributions

1. Study conditions under which an adversarial attack can succeed.
2. Present various attacks:

2.1 Known f : Subtraction Rnd and Subtraction Sq, Clipping Attack.
2.2 Unknown f : Aggressive Subtraction.

Demonstrated their effectiveness on a diverse range of objective functions.
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