

Adversarial Attacks on Gaussian Process Bandits

Eric Han,¹ Jonathan Scarlett^{1,2}

¹School of Computing, National University of Singapore (NUS)

²Department of Mathematics & Institute of Data Science, NUS

eric_han@nus.edu.sg, scarlett@comp.nus.edu.sg

39th International Conference on Machine Learning (Jul 17-23, 2022)

Motivation

GP bandits is the problem of optimizing a black-box function f by using derivative-free queries guided by a GP surrogate model; where f is assumed to be in the RKHS:

$$\max_x f(x).$$

Function observations are typically subject to **corruptions** in the real-world, which are not adequately captured by random noise alone:

1. Rare outliers - i.e. equipment failures,
2. Bad actors - i.e. malicious users.

Related Work

In literature, methods primarily **focused on proposing methods that defend against the proposed uncertainty model** to improve robustness for GP optimization:

- ▶ Presence of outliers,
- ▶ Random perturbations to sampled points,
- ▶ Adversarial perturbations to the final point / samples.

Minimal work studying the problem from an **attacker's perspective**.

Our Goal

Examine from an attacker's perspective, focusing on adversarial perturbations.

Setup

At time t , with random Noise $z_t \sim \mathcal{N}(0, \sigma^2)$, adversarial noise c_t and budget C :

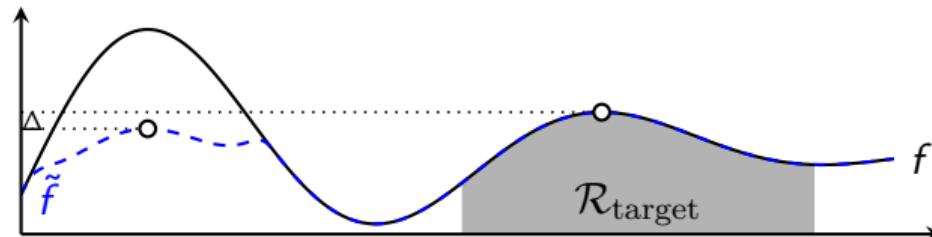
$$y_t = f(\mathbf{x}_t) + c_t + z_t, \quad \text{where } \sum_{t=1}^n |c_t| \leq C.$$

With various levels of knowledge available to the adversary:

1. Targeted Attack - make the player choose actions in a particular region $\mathcal{R}_{\text{target}}$.
2. Untargeted Attack - make the player's cumulative regret as high as possible.

Theoretical Study

Theory applies¹ to **any** algorithm that gets sublinear regret in non-corrupted setting.



Theorem 1 (Rough Sketch)

Adversary performs an attack shifting the original function f to \tilde{f} , with sufficient conditions, resulting in linear regret with high probability.

¹Also even in certain cases where the attacker doesn't know f .

Subtraction Attack (Known f)

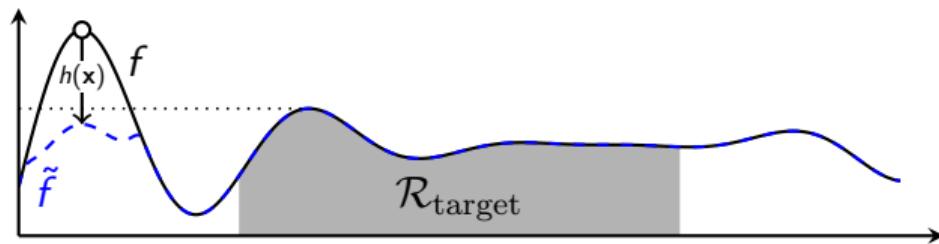
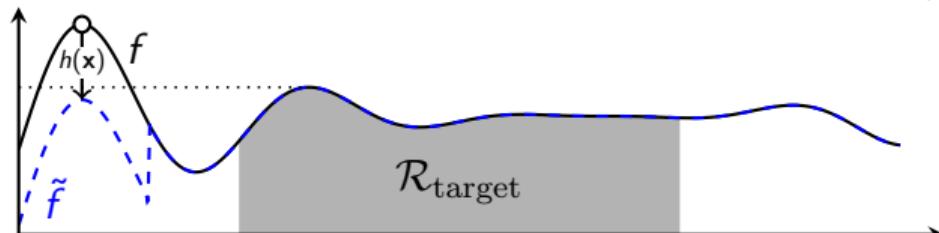
Idea is to ‘swallow’ the peaks of the function f .

Set $\tilde{f}(x) = f(x) - h(x)$, where h :

- ▶ Subtraction Rnd - bump fn.
- ▶ Subtraction Sq - indicator fn.

Discussion:

1. Strong theoretical guarantees².
2. Requiring knowledge of f .
3. Difficult to construct h .



Subtraction Rnd (top) and Sq (bottom).

²Only for Subtraction Rnd; depending on the properties of h .

Clipping Attack (Known f)

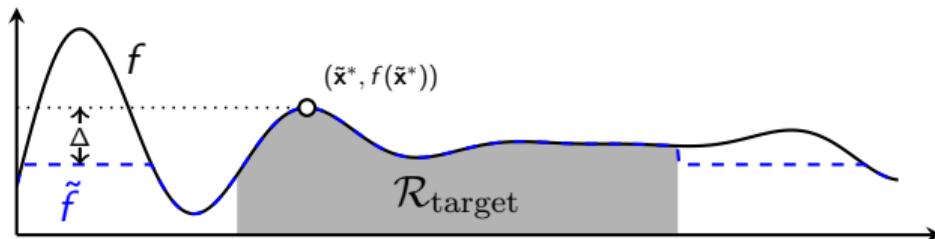
Idea is to 'cut' the rest of the function f off by Δ from the peak in $\mathcal{R}_{\text{target}}$.

Clipping Attack by setting:

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \mathcal{R}_{\text{target}} \\ \min \{f(x), f(\tilde{x}^*) - \Delta\} & x \notin \mathcal{R}_{\text{target}}, \end{cases}$$

Discussion:

1. Practical, easy to implement.
2. \tilde{f} not in RKHS.



Aggressive Subtraction Attack (Unknown f)

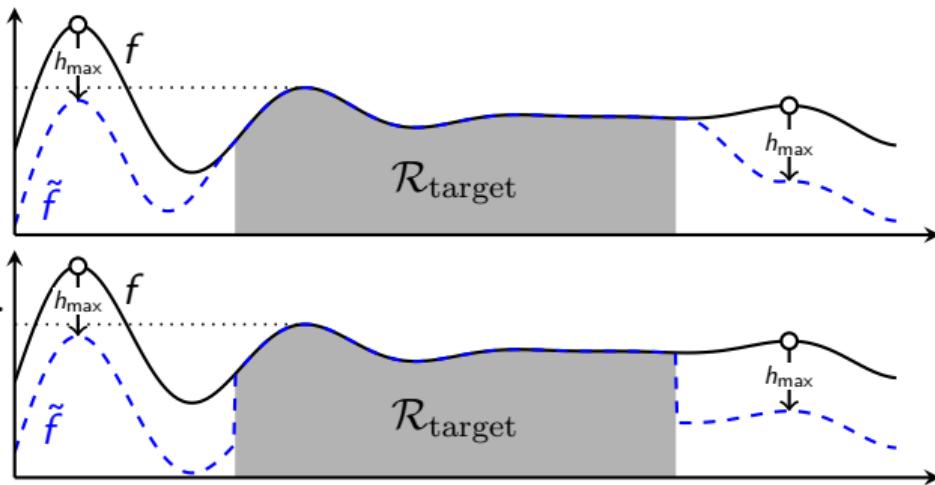
Idea is to subtract *all* points outside $\mathcal{R}_{\text{target}}$ by roughly the same value h_{\max} .

Simplified Aggressive Subtraction,
without “transition region”:

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \mathcal{R}_{\text{target}} \\ f(x) - h_{\max} & x \notin \mathcal{R}_{\text{target}} \end{cases}$$

Discussion:

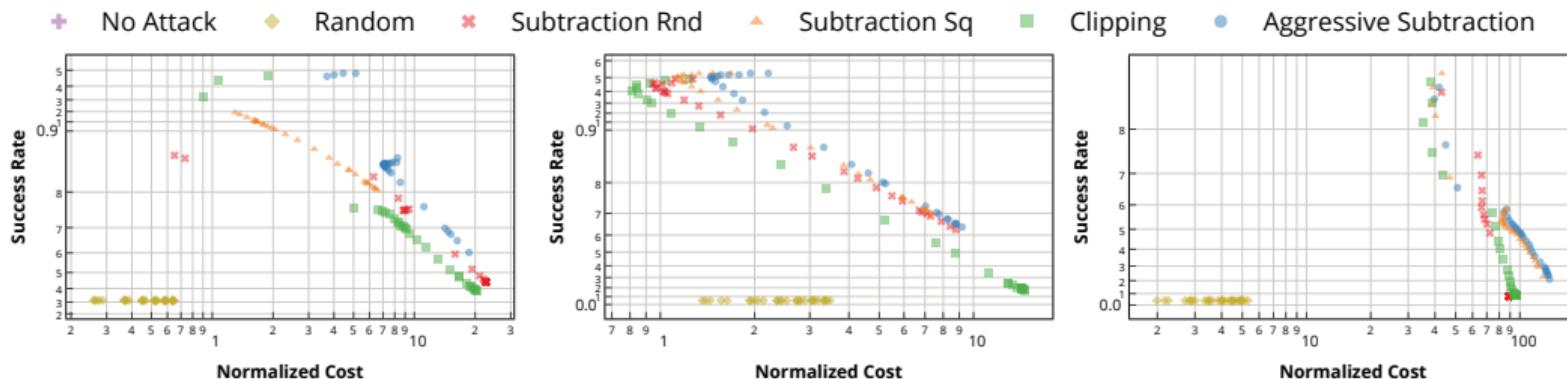
1. Strong theoretical guarantees³.



With “transition region” (top) and without (bottom).

³Only for Aggressive Subtraction with “transition region”.

Results for Synthetic1D, Forrester1D, Levy-Hard1D



- ▶ Clipping works consistently.
- ▶ Aggressive Subtraction works, but with higher cost.
- ▶ Subtraction Rnd and Subtraction Sq is 'in between'.
- ▶ Subtraction Rnd tends to narrowly beat Subtraction Sq (due to smooth $h(x)$).

Key Contributions

1. Study conditions under which an adversarial attack can succeed.
2. Present various attacks:
 - 2.1 Known f : Subtraction Rnd and Subtraction Sq, Clipping Attack.
 - 2.2 Unknown f : Aggressive Subtraction.

Demonstrated their effectiveness on a diverse range of objective functions.

Adversarial Attacks on Gaussian Process Bandits
Eric Han, Jonathan Scarlett
ICML 2022

arXiv: <https://arxiv.org/abs/2110.08449>