
Direct Behavior Specification
via Constrained RL
Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, Christopher Pal

➢ “All of what we mean by goals and purposes can be
well thought of as the maximisation of the expected
value of the cumulative sum of a received scalar
signal (called reward)”

(Sutton & Barto, 2020)

i.e. all tasks can be defined as a scalar function to maximise

Reward hypothesis

RL often leads to unforeseen behaviors

source: https://openai.com/blog/faulty-reward-functions/

From OpenAI: From Ubisoft LaForge:

https://openai.com/blog/faulty-reward-functions/

RL often leads to unforeseen behaviors

From OpenAI: From Ubisoft LaForge:

source: https://openai.com/blog/faulty-reward-functions/

https://openai.com/blog/faulty-reward-functions/

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A + B

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A + B + C

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A + B + C + D

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E

The problem

The more complex the task becomes, the more components
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E

Experimental Setup: Arena env

Reward Engineering

Reward Engineering

1 additional requirement

Reward Engineering

1 additional requirement

2 additional requirements

Reward Engineering

1 additional requirement

2 additional requirements

3 additional requirements

MDPs

Environment

Constrained MDPs

…

Environment

Constrained MDPs

…

Environment

Lagrangian methods

➢ Popular method to solve constrained optimisation problems

Lagrangian methods

➢ Can be solved with gradient-based optimisation

Policy
update:

Multipliers
update:

Proposed approach

➢ Use a special family of CMDPs to ease the behavior specification task
➢ Use modified Lagrangian method to handle the many constraints case

In particular:

1. as indicator cost functions
2. Normalized multipliers
3. Bootstrap constraint

Proposed approach

1. as indicator cost functions

Proposed approach

1. as indicator cost functions

By using an indicator cost-function, the expected discounted sum admits an intuitive
interpretation:

Proposed approach

1. as indicator cost functions

By using an indicator cost-function, the expected discounted sum admits an intuitive
interpretation:

This design choice allows us to easily specify the corresponding thresholds:

Proposed approach

2. Normalized multipliers

Proposed approach

2. Normalized multipliers

Proposed approach

3. Bootstrap constraint

Idea: Granting to our reward function the same powers our constraints have

But: Want to preserve a maximisation problem

Proposed approach

3. Bootstrap constraint

Idea: Granting to our reward function the same powers our constraints have

But: Want to preserve a maximisation problem

1. We add a success constraint

2. We lend its multiplier to the main reward function when constraints

aaaa are unsatisfied, and use otherwise

success condition
(sparse)

shaping reward
(dense)

Experimental Setup: Arena env

Results: single constraint case

Results: SAC-Unconstrained

(a): SAC (unconstrained)
(b): SAC-Lagrangian
(c): SAC-Lagrangian + Bootstrap constraint

(a)

(b)

(c)

Results: SAC-Unconstrained

(a): SAC (unconstrained)
(b): SAC-Lagrangian
(c): SAC-Lagrangian + Bootstrap constraint

(a)

(b)

(c)

Results: SAC-Unconstrained

(a): SAC (unconstrained)
(b): SAC-Lagrangian
(c): SAC-Lagrangian + Bootstrap constraint

(a)

(b)

(c)

Results: SAC-Unconstrained

(a): SAC (unconstrained)
(b): SAC-Lagrangian
(c): SAC-Lagrangian + Bootstrap constraint

(a)

(b)

(c)

Results: SAC-Unconstrained

(a): SAC (unconstrained)
(b): SAC-Lagrangian
(c): SAC-Lagrangian + Bootstrap constraint

(a)

(b)

(c)

Results: SAC-Unconstrained

(a): SAC (unconstrained)
(b): SAC-Lagrangian
(c): SAC-Lagrangian + Bootstrap constraint

(a)

(b)

(c)

Experimental Setup: OpenWorld env

Conclusion

Conclusion

1. RL often produces unforeseen behaviors

Conclusion

1. RL often produces unforeseen behaviors

2. Reward engineering does not scale well with the task complexity

Conclusion

3. A special case of CMDPs offers a viable solution
 to behavior specification

1. RL often produces unforeseen behaviors

2. Reward engineering does not scale well with the task complexity

Thank you!

