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➢ “All of what we mean by goals and purposes can be 
well thought of as the maximisation of the expected 
value of the cumulative sum of a received scalar 
signal (called reward)”

(Sutton & Barto, 2020)

i.e.   all tasks can be defined as a scalar function to maximise

Reward hypothesis



RL often leads to unforeseen behaviors

source: https://openai.com/blog/faulty-reward-functions/

From OpenAI: From Ubisoft LaForge:

https://openai.com/blog/faulty-reward-functions/


RL often leads to unforeseen behaviors

From OpenAI: From Ubisoft LaForge:

source: https://openai.com/blog/faulty-reward-functions/

https://openai.com/blog/faulty-reward-functions/


The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A



The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A + B



The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A + B + C



The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A + B + C + D



The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E



The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E



The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E



The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E



The problem

The more complex the task becomes, the more components 
need to be incorporated in the reward function

R(s,a) = A + B + C + D + E



Experimental Setup: Arena env
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MDPs
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Lagrangian methods

➢ Popular method to solve constrained optimisation problems



Lagrangian methods

➢ Can be solved with gradient-based optimisation

Policy 
update:

Multipliers 
update:



Proposed approach

➢ Use a special family of CMDPs to ease the behavior specification task
➢ Use modified Lagrangian method to handle the many constraints case

In particular:

1.         as indicator cost functions
2. Normalized multipliers
3. Bootstrap constraint
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By using an indicator cost-function, the expected discounted sum admits an intuitive 
interpretation:

This design choice allows us to easily specify the corresponding thresholds:
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Proposed approach

3.       Bootstrap constraint

Idea: Granting to our reward function the same powers our constraints have

But: Want to preserve a maximisation problem

1. We add a success constraint

2.      We lend its multiplier                     to the main reward function           when constraints 

aaaa are unsatisfied, and use           otherwise   

success condition
(sparse)

shaping reward
(dense)



Experimental Setup: Arena env



Results: single constraint case
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Results: SAC-Unconstrained

(a): SAC (unconstrained)
(b): SAC-Lagrangian
(c): SAC-Lagrangian + Bootstrap constraint
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Experimental Setup: OpenWorld env
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Conclusion

3.  A special case of CMDPs offers a viable solution
      to behavior specification

1.  RL often produces unforeseen behaviors

2.  Reward engineering does not scale well with the task complexity



Thank you!


