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Presenter Notes
Presentation Notes
Hello, �I’m Tanmay, and today I’m going to be presenting our work on Learning Unsupervised Skill Correspondences across Robots, this is joint work with my collaborators at Meta AI, and my advisor Jean at CMU. 



The Marvelous Human

[1] Video: https://www.youtube.com/watch?v=qjaTp5MwqbQ&

Presenter Notes
Presentation Notes
Human beings have the most remarkable ability to learn to perform tasks by watching other people demonstrate these tasks. We do so because of two key abilities - 





The Marvelous Human

Ability #1: 
Humans have well-developed motor skills that we can execute with little effort.

Presenter Notes
Presentation Notes
We do so because of two key abilities; �The first, is that we have well-developed motor skills we can execute with little effort or thought. 



The Marvelous Human

Ability #1: 
Humans have well-developed motor skills that we can execute with little effort.

Ability #2: 
Humans can reason abstractly about the sequence of skills a demonstrator uses; 

and find corresponding skills to execute ourselves.

Presenter Notes
Presentation Notes
And the second; the ability to abstractly reason about skills the demonstrator uses, and find corresponding skills to execute ourselves. 
As is loosely backed up by behavioural research (Meltzoff & Moore). 



How can we enable robots with these abilities?

Presenter Notes
Presentation Notes
The question we want to answer in this work is -  how do we enable robots with these abilities? 




How can robots learn correspondences between their own skills, and those 
of a demonstrator (whether human, or robot, with different embodiments)? 

Presenter Notes
Presentation Notes
Or more specifically




How can robots learn correspondences between their own skills, and those 
of a demonstrator (whether human, or robot, with different embodiments)? 

This enables robots to: 
Adopt demonstrator task strategies for themselves;

Compose existing skills to broaden their repertoire of tasks.

Presenter Notes
Presentation Notes
Answering this question would enable robots to – adopt demonstrator task strategies (sequences of skills) for themselves, and compose the existing skills they have to solve new tasks more efficiently, (such as the child learning to karate kick a plank). 
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T. Shankar, A. Gupta, “Learning Robot Skills with Temporal Variational Inference”, ICML 2020
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Presentation Notes
We’re going to assume that we have access to an unlabeled, unsegmented demonstration dataset of agents performing a variety of tasks. 
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We’re also going to assume we have access to a latent skill representation computed from these demonstrations, that our prior work lets us do. 
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And we have such data in both the source domain, which could be a human or a robot, and in the target domain, a morphologically different robot. 
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Here, we want to learn correspondences between skills across domains, depicted by these red lines; ideally in an unsupervised setting, so we don’t have to rely on parallel demonstrations. �
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An instance of one such correspondence could be something like this – where the demonstrator and the target learner are both reaching towards the left


Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.


Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.
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We can represent these correspondences with a mapping function (f), that maps across skill representations. 
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Well, let’s take a look at the problem setting we have. �We have unpaired demonstration data in each domain; we have some learnt representation in each domain, and we’re trying to learn a function that maps across these representations in a completely unsupervised manner. 
This is reminiscent of the Unsupervised Machine translation problem, where we have unpaired corpora of text in each source and target language, and we’re trying to learn a translation function between languages / words in languages. 



Insight: 
Learning skill correspondences is equivalent to unsupervised machine translation.
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Presentation Notes
This leads us to our first insight – that learning skill correspondences across robots and agents, is equivalent to unsupervised machine translation. This allows us to use similar machinery to solve our problem. 
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We solve the problem of learning skill correspondences by learning a “translation function” between source, and target domain skill spaces. 
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Presentation Notes
Consider that we have a learnt skill representation in the source domain, and one in the target domain. 
We can solve our correspondence learning problem, by taking inspiration from UNMT, and learning a translation model, that translates the source skill representation (by creating a translated version of every point in the source domain skill representation); ��Now, we want to enforce some constraint on this translated skill space, and the target skill space, such that the correpsondences learnt by the translation function are reasonable. 



How do we learn this translation model? 



Insight: 
Agents with different embodiments use similar sequences of skills to solve similar tasks.
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For example, the child and the adult both use the same skills of raising their leg, and then kicking down on the block, in the karate video. 



Insight: 
Agents with different embodiments use similar sequences of skills to solve similar tasks.

Sequences of skills should belong to similar distributions, irrespective of embodiment.
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So how do we operationalize this insight that sequences of skills should belong to similar distributions? �
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Presentation Notes
We first estimate the distributions of sequences of skills that occur in each of the source and target domains.  let’s assume that we have some way of estimating distributions of skills from these learnt skill spaces for a second. �
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Presentation Notes
Given such explicit estimates of skill sequence distributions, we can train the translation model to match these distributions. For more details please visit our poster or check out our paper. 



Results
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Lets take a look at some correspondences our method is able to learn entirely unsupervised. 



Aligned skills across all agents
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Overall, our approach is able to learn unsupervised skill correspondences across several different agents – a sawyer, a baxter, a franka, and a human demonstrator. 



Translating Individual Skills
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Sawyer

Source Domain
Franka
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Our approach is capable of translating a variety of individual skills across robots, such as reaching, placing, sliding, 





Translating Individual Skills
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And is able to do so even from human agents to target robots. 




Translating Entire Trajectories

Target Domain
Franka

Source Domain
Human
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Our approach can also translate entire trajectories, or sequences of skills, across human and robots, such as this stamping trajectory depicted by the human. �For more extensive results and evaluations, check out our poster, or our paper! 




Future Directions
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We hope this work enables downstream research on translating large scale human videos and instructions to robot task strategies; affording 



Scan for more! 

Or e-mail me:
tanmay.shankar@gmail.com

Thank you!
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Thank you! If you have questions, please check out our paper, and our poster session, or email me! 

mailto:tanmay.shankar@gmail.com
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