

SDQ: Stochastic Differentiable Quantization with Mixed Precision

ICML 2022

Xijie Huang, Zhiqiang Shen, Shichao Li, Zechun Liu, Xianghong Hu, Jeffry Wicaksana, Eric Xing, Kwang-Ting Cheng

Webpage: https://huangowen.github.io/SDQ/

Background

- Efficient deployment of deep learning models:
 - Consideration: time latency, energy consumption, model size

- Mixed Precision Quantization (MPQ)
 - Fully leverage the various representation capacity for different modules

Motivation

- Previous MPQ methods:
 - Search-based, Metric-based, Optimization-based

- Challenges:
 - Search-based: high computation cost of NAS or RL
 - Metric-based: sub-optimal generated MPQ strategy
 - Optimization-based: inaccurate gradient approximation

• Our target: fully differentiable, accurate, efficient method

SDQ: Stochastic Differentiable Quantization

• Learn the optimal bitwidth with stochastic quantizer

SDQ: Stochastic Differentiable Quantization

- Differentiability: Gumbel Softmax to sample from bitwidth
- Underlying loss optimization landscape:

Experiment

- Networks: ResNet18, ResNet20, MobileNet-V2
- Datasets: CIFAR-10, ImageNet-1K

Comparison with SOTA of ResNet20 on CIFAR-10

Method	Bit-width	mixed	Accu	WCR		
	(W/A)	IIIIXCU	Top-1	FP Top-1	WCK	
Dorefa(Zhou et al., 2016)	2/32		88.2	92.4	16×	
PACT (Choi et al., 2018)	2/32		89.7	92.4	$16 \times$	
LQ-net(Zhang et al., 2018)	2/32		91.1	92.4	$16 \times$	
TTQ (Jain et al., 2019)	2.00/32	√	91.2	92.4	16×	
Uhlich et al. (Uhlich et al., 2020)	2.00/32	\checkmark	91.4	92.4	$16 \times$	
BSQ (Yang et al., 2020)	2.08/32	\checkmark	91.9	92.6	$15.4 \times$	
DDQ (Zhang et al., 2021)	2.00/32	\checkmark	91.6	92.4	$16 \times$	
Ours	1.93/32	✓	92.1	92.4	16.6×	

Feature embedding visualization using t-SNE

Experiment

- Comparison with SOTA of ResNet18 on ImageNet-1K
 - Achieve an increase of 1.1% with a more compact bitwidth (3.61/4 vs. 4/4)

Network	Method	Bit-width	Mixed	Uniform	Accuracy (%)		WCR	Model	BitOPs (G)
		(W/A)			Top-1	FP Top-1	WCK	Size (MB)	
	Dorefa [†] (Zhou et al., 2016)	4/4		✓	68.1	70.5	8×	5.8	35.2
	PACT [†] (Choi et al., 2018)	4/4		\checkmark	69.2	70.5	$8 \times$	5.8	35.2
	LQ-net (Zhang et al., 2018)	4/4			69.3	70.5	$8 \times$	5.8	35.2
	APOT (Li et al., 2019b)	4/4			70.7	70.5	$8 \times$	5.8	34.7
	DNAS [†] (Wu et al., 2018)	-/-	✓	✓	70.6	71.0	8×	5.8	35.2
	HAQ (Wang et al., 2019)	4/32	\checkmark	\checkmark	70.4	70.5	$8 \times$	5.8	465
	EdMIPS (Cai & Vasconcelos, 2020)	4/4	\checkmark	\checkmark	68.0	70.2	$8 \times$	5.8	34.7
ResNet18	HAWQ-V3 [†] (Yao et al., 2021)	4.8/7.5	\checkmark	\checkmark	70.4	71.5	$6.7 \times$	7.0	72.0
Resnetto	Chen et al. (Chen et al., 2021)	3.85/4	✓	\checkmark	$69.7_{\downarrow 0.1\%}$	69.8	$8.3 \times$	5.6	33.4
	FracBits-SAT (Yang & Jin, 2021)	4/4	✓	\checkmark	$70.6_{\uparrow 0.4\%}$	70.2	$8 \times$	5.8	34.7
	Uhlich et al. (Uhlich et al., 2020)	3.88/4	√		70.1	70.3	8.3×	5.6	33.7
	RMSMP (Chang et al., 2021)	4/4	\checkmark		70.7	70.3	$8 \times$	5.8	34.7
	DDQ (Zhang et al., 2021)	4/4	\checkmark		71.2	70.5	$8 \times$	5.8	34.7
		3.61/8	√	√	72.1 _{↑1.6%}	70.5	8.9 ×	5.2	62.6
	Ours	3.61/4	✓	\checkmark	71.7 _{↑1.2%}	70.5	8.9 ×	5.2	31.3
		3.61/3	✓	\checkmark	$70.2_{\downarrow 0.3\%}$	70.5	8.9 ×	5.2	23.5
		3.61/2	✓	✓	69.1 _{\downarrow1.4%}	70.5	8.9 ×	5.2	15.7

Experiment

- Comparison with SOTA of MobileNetV2 on ImageNet-1K
 - Achieve a higher compression $(8.7 \times \text{ vs. } 8 \times)$ with higher accuracy (72.0% vs. 71.8%)
 - First model outperforms full-precision baseline with less than 4-bit settings

Network	Method	Bit-width	Mixed	lixed Uniform	Accuracy (%)		WCR	Model	BitOPs (G)
		(W/A)	MIXEG		Top-1	FP Top-1	WCK	Size (MB)	DIOFS (G)
MobileNetV2	Dorefa [†] (Zhou et al., 2016)	4/4		√	61.8	71.9	8×	1.8	7.42
	PACT [†] (Choi et al., 2018)	4/4		\checkmark	61.4	71.9	$8 \times$	1.8	7.42
	LQ-net (Zhang et al., 2018)	4/4			64.4	71.9	$8 \times$	1.8	7.42
	APOT (Li et al., 2019b)	4/4			71.0	71.9	$8 \times$	1.8	5.35
	HAQ (Wang et al., 2019)	4/32	√	√	71.5	71.9	8×	1.8	42.8
	HMQ (Habi et al., 2020)	3.98/4	\checkmark	\checkmark	70.9	71.9	$8.1 \times$	1.7	5.32
	Chen et al. (Chen et al., 2021)	4.27/8	✓	\checkmark	$71.8_{\downarrow 0.1\%}$	71.9	$7.5 \times$	1.9	5.32
	FracBits-SAT (Yang & Jin, 2021)	4/4	✓	\checkmark	$71.6_{\downarrow 0.2\%}$	71.8	$8 \times$	1.8	5.35
	Uhlich et al. (Uhlich et al., 2020)	3.75/4	√		69.8	70.2	8.5×	1.6	5.01
	RMSMP (Chang et al., 2021)	4/4	\checkmark		69.0	71.9	$8 \times$	1.8	5.35
	DDQ (Zhang et al., 2021)	4/4	\checkmark		71.8	71.9	$8 \times$	1.8	5.35
	Ours	3.66/8	√	√	72.9 _{↑1.0%}	71.9	8.7 ×	1.8	9.79
		3.66/4	✓	✓	72.0 _{↑0.1%}	71.9	8.7 ×	1.8	4.89

Conclusion

- We present a novel stochastic quantization framework to learn the optimal mixed precision quantization strategy.
- We utilize the straight-through Gumbel-Softmax estimator in the gradient computation w.r.t. differentiable bitwidth parameters.
- We extensively evaluate our method on different networks (ResNet18 and MobileNetV2) and datasets (CIFAR-10 and ImageNet-1K).
- More in the paper:
 - Entropy-aware Bin Regularizer (EBR) to minimize quantization error
 - Knowledge distillation loss and analysis on different full-precision teacher
 - Deployment experiments on the object detection task and a real FPGA system

Thanks for listening!

Webpage: https://huangowen.github.io/SDQ/