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The goal of eXplainable Artificial Intelligence (XAl) is to
make Al decision understandable to humans.

\/ Technigues to generate explanations
\/ Analysis of the techniques

\/ Validation of the techniques

x How humans interpret the explanations given



Humans project their beliefs onto the Al;
thus, they interpret the explanation provided
by comparing it to the explanations that
they themselves would give.
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1.

Participants will project their own beliefs
onto the Al, resulting in low fidelity between
human beliefs and Al behavior for trials
when the Al is wrong.

Good explanations increase fidelity,
especially when the original fidelity is low
(when Al is wrong).

Model prediction recovers H2.

The likelihood captures belief-updating from
specific explanations, meaning that the full
model is better than a prior-only model at
predicting human behavior.
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Participants will project their own beliefs
onto the Al, resulting in low fidelity between
human beliefs and Al behavior for trials
when the Al is wrong.

Good explanations increase fidelity,
especially when the original fidelity is low
(when Al is wrong).

Model prediction recovers H2.

. The likelihood captures belief-updating from
specific explanations, meaning that the full
model is better than a prior-only model at
predicting human behavior.

Comparison between explanations is done
iIn a psychological space, implying that less-
natural space (L1-norm) will be worse.

Generalization follows Shepard's universal
law and decays monotonically with
increasing psychological distance, implying
that distributions that violate this decay
(Beta(\,A)) will be worse.

. The theory predicts human response well
across a wide range of stimuli, classes, and
explanations.
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