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Setup

e Response variable Y, predictor variables X1, ..., Xy, observed in different
environments E (e.g., observational/interventional data).

Existing idea: Invariant Causal Prediction (Peters et al., 2016)

— A causal model is invariant across environments (formally: Y 1L E | Xgs).
— Output intersection of all invariant models.

e Sicp is a subset of PAy.

Problems:

— Sicp is often empty.
— Sicp is not necessarily invariant.

Goal: Improve on above shortcomings of ICP.

Key insight: Minimal invariance.
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Example

Inv. sets: {1,2}, {3}, {1,2,3}, ...

X1 —=Y
EZ + N
Xy = Xs X,
~_ "

Inv. sets: {1,2}, {1,3}, {1,2,3}, ...

= Scp=10

= Sicp = {1}
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Invariant Ancestry Search

e S min.inv. :< Sinv. and no S’ C S inv.
e Min. inv. sets are ancestors of Y (Tian et al.,

e |IAS: Output union of min. inv. sets.

ICP (SICP = ﬂS:S inv. S)

Sice € PAy .
P(Scp € PAY) > 1— a. .
Can be empty. °
Not necessarily invariant. °
[}
[}

1998)

IAS (Sias = Us:s min. inv. 5)
Sias € ANy
lim, 00 P(Sias € ANy) > 1 — av.
Non-empty.
Invariant.
Sicp C Sias (Equal iff ICP invariant.)

Retains guarantees if restricted to inv.
sets up to size m < d.
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Example

Inv. sets: {1,2}, {3}, {1,2,3}, ... = Scp=10
Min. inv. sets: {1,2}, {3} = Sas = {1,2,3}

X1 —=Y
EZ + N
Xo = Xg Xy
~_ "

Inv. sets: {1,2}, {1,3}, {1,2,3}, ... = Sicp = {1}
Min. inv. sets: {1,2}, {1,3} = Sias = {1,2,3}
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Numerical experiments

Oracle IAS and ICP different Oracle IAS and ICP equal
q . q .
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e |AS often strictly larger than ICP.
e |AS finds large sets of ancestors in finite samples
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Summary

e |AS finds non-empty, invariant sets of predictors that are ancestors of Y.
e Numerical experiments: Sicp C Sjas often strict; 1AS finds subsets of ANy in finite
samples with high probability.
For more of our work, visit our website:

https://cocala.github.io/

Thanks for listening!
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