
C o p e n h a g e n C a u s a l i t y L a b ( C o C a L a ) ,

U n i v e r s i t y o f C o p e n h a g e n

Invariant Ancestry
Search

Phillip B. Mogensen Nikolaj Thams Jonas Peters



Setup

• Response variable Y , predictor variables X1, . . . ,Xd , observed in different
environments E (e.g., observational/interventional data).

• Existing idea: Invariant Causal Prediction (Peters et al., 2016)
− A causal model is invariant across environments (formally: Y ⊥⊥ E | XS).
− Output intersection of all invariant models.

• SICP is a subset of PAY .
• Problems:

− SICP is often empty.
− SICP is not necessarily invariant.

• Goal: Improve on above shortcomings of ICP.
• Key insight: Minimal invariance.

U n i v e r s i t y o f C o p e n h a g e n 1



Example
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Inv. sets: {1, 2}, {3}, {1, 2, 3}, . . . ⇒ SICP = ∅

Min. inv. sets: {1, 2}, {3} ⇒ SIAS = {1, 2, 3}
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Inv. sets: {1, 2}, {1, 3}, {1, 2, 3}, . . . ⇒ SICP = {1}

Min. inv. sets: {1, 2}, {1, 3} ⇒ SIAS = {1, 2, 3}
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Invariant Ancestry Search

• S min. inv. :⇔ S inv. and no S ′ ( S inv.
• Min. inv. sets are ancestors of Y (Tian et al., 1998)
• IAS: Output union of min. inv. sets.

ICP (SICP :=
⋂

S:S inv. S)

• SICP ⊆ PAY

• P(ŜICP ⊆ PAY ) ≥ 1− α.
• Can be empty.
• Not necessarily invariant.

IAS (SIAS :=
⋃

S:S min. inv. S)

• SIAS ⊆ ANY

• limn→∞ P(ŜIAS ⊆ ANY ) ≥ 1− α.
• Non-empty.
• Invariant.
• SICP ⊆ SIAS (Equal iff ICP invariant.)
• Retains guarantees if restricted to inv.

sets up to size m < d .
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Numerical experiments
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• IAS often strictly larger than ICP.
• IAS finds large sets of ancestors in finite samples
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Summary

• IAS finds non-empty, invariant sets of predictors that are ancestors of Y .
• Numerical experiments: SICP ⊆ SIAS often strict; IAS finds subsets of ANY in finite

samples with high probability.
For more of our work, visit our website:

https://cocala.github.io/

Thanks for listening!
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