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Why Graphs ?

Graph-based representations are powerful tools to represent

structure data that is described with pairwise relationships

between components.

Social Networks Biology Networks Finance Networks

Logistic Networks
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Graphs are Everywhere
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Challenges and Methods

B Challenges: Graphs are typical non-Euclidean data, thus it is hard to

learn effective numeric features for graphs

Hm State-of-The-Art Methods:

» Graph Embeddings: Represent the characteristics of graphs in a low

dimensional vector space

> Graph Kernels: Compute the similarity between graphs in a high

dimensional Hilbert space, better preserve structure information

» Graph Convolutional Networks: Generalize the convolution operation of

CNNs to graphs, provide end-to-end learning framework
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Graph Kernels

B R-convolution: The widely used framework to define graph kernels,

defined by decomposing graphs into subsructures and then measuring

the isomorphism between them
B Drawbacks of R-convolution Graph Kernels: Ignore the

correspondence information between substructures, thus cannot reflect

precise similarity measures

B Alignment or Matching Graph Kernels: Integrate the vertex/edge
correspondence information into the kernel computation, the

correspondence is usually not transitive, thus are not Positive Definite (pd)

5/11



Outline

6/11



The Objective of This Work

B Develop New Alignment Kernels:

> Overcome the Drawback of Ignoring Correspondence Information

» Guarantee the Transitivity between Aligned Vertices

> Guarantee the Positive Definite

B The Ideas:

> Construct A Family of Hierarchical Prototype Representations

» Align Each Individual Graph Structure to the Same Prototype

Representation Sets of Different Levels

> Define the Kernels by Counting the Number of the Hierarchically
Aligned Vertex Pairs
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The Prototype Representations

H Initialize The Vectorial Representations of Vertices: Depth-based
(DB) Complexity Traces of Vertices
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m Hierarchical Prototype Representations: Hierarchically employ the
k-means clustering method on the DB complexity traces
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The Proposed Kernel

B The Correspondence Matrix: Record the correspondence information
of each graph G, to the k-level prototype representations

1 if Rh **(i,n) is the smallest
Mrh k(i) = element in row n, and |S¥| # 0;
0 otherwise.

B The Proposed Kernel: Counting the numbers of the transitive aligned
vertex pairs between a pair of graphs G, and G,

H K |[Vsl Vgl

Bimak (Gpr Ga) = 332> Y My (@

h=1 k=1 i=1 j=1
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I Classification Evaluations on Benchmark Datasets

B The Benchmark Datasets:

Table 1. Information of the graph based computer vision (CV), bioinformatics (Bio),

and social network (SN) datasets.

| Datasets | BAR3I | BSPHERE31 | GEOD31 | MUTAG [ NCIl | CATH2 | COLLAB | IMDB-B | IMDB-M |
Max # vertices 220 227 380 28 111 568 492 136 89
Mean # vertices 05.42 99.83 57.42 17.93 29.87 308.03 74.49 19.77 13.00
# graphs 300 300 300 188 4110 190 5000 1000 1500
# classes 15 15 15 2 2 2 3 2 3
Description Ccv CcvV CcvV Bio Bio Bio SN SN SN

B Comparisons with Graph Kernels:

Table 2. Classification Accuracy (In % = Standard Error) for Comparisons with Graph Kernels.

Datasets | _BAR31 [_BSPHERE3I | GEOD3I [ MUTAG [ _NcO [_CATH2 [ COLLAB [ _IMDB B IMDB_M
HTAK 71.00E.45 62.00L.65 | 47.80F.40 | 87.32£.60 79.01F.14 87.80L.71 7TO.87L.15 | 72.80L.56 | 50.23+1.18
Ao o LU0 LECL I LW o s 0 ¢ e L N 0 )= O U O To. 31T = 1= [ =T -Sunil s N ) [T I J= s 8 TS0 .0 & o LU o s N
WLSK 58.53+.53 12.10£.68 | 38.20L£.68 | B2.88E.57 BL7TE.13 67.36L.63 77.30£.35 T1.8BE.77 40.50£.49
SPGK 55.73+.44 48.20f.76 | 38.40%.65 83.38£ .81 74.21+.30 §1.80+.63 58.80%.20 71.26£1.04 | 51.33%.57
CORE SP = - - 88.20F1.55 | 73.46%.32 = = 72.62£.50 19.43F£.42
GCGK 23.40£.60 18.80£.50 | 22.36L.55 82.04%.30 63.72£.12 7T3.68£1.00 | — = =

TTQK 60.56L.35 16.03L.61 10.10£.46 | B85.50L.55 8532+ 14 | 68.70L.60 T6.85E.40 72.45L .81 50.33E.40
PMGK = - - 80.66+.90 72.27£.59 = — 68.53L.61 15.75£.66
CORE PM = = = 87 10£1.47 T1.00+.45 - - 71.04£.64 18.30£1.01
RelGKMC) | — - - - - = 73.60 £ 30 | 71.00L.60 16.70£.60

The symbol - means that some approaches were not evaluated by the original authors.

B Comparisons with Deep Learning Methods:

Table 3. Classification Accuracy (In % =4 Standard Error) for Comparisons with Deep Learning Methods.

[ Datasets | MUTAG [ NCTi [ COLLAB [ IMDB-B [ TMDB-M |
I HTAK 87.324.60 79.014.14 TO.BT+.15 T2.894+.56 50.23+.18 I
DL RO BO0 T 1.00 [ P = = [ P s 2 TO. Do .50 e o T S Y
PSGCNN 88.954+4.37 T6.34+1.68 T2.604+2.15 T1.00+2.29 45.234+2.84
DCNN 66.98 56.611+1.04 52.11+.71 49.06+1.37 33.4941.42
DGK 82.6611.45 62 481 .25 T3.091.25 66.961+.56 44 554+ .52
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