

39th International Conference on Machine Learning

A Hierarchical Transitive-Aligned Graph Kernel for Un-attributed Graphs

Lu Bai^{1,2}, Lixin Cui^{2,*}, Edwin R. Hancock³

¹ School of Artificial Intelligence, Beijing Normal University, Beijing, China

² Central University of Finance and Economics, Beijing, China

³ Department of Computer Science, University of York, UK

* Corresponding Author: cuilixin@cufe.edu.cn

Outline

Background

Our Methods

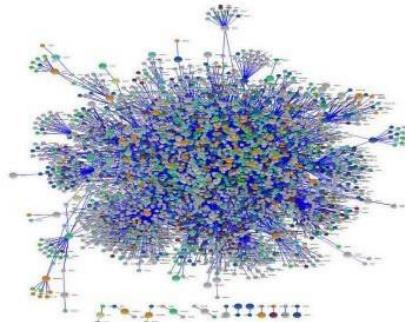
Experiments

Why Graphs ?

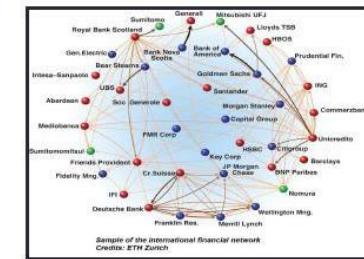
- Graph-based representations are **powerful tools** to represent **structure data** that is described with **pairwise relationships** between components.

Social Networks

Biology Networks

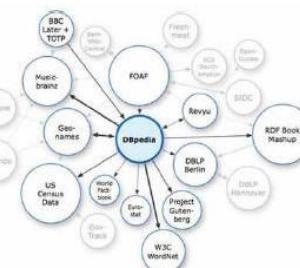


Finance Networks



Internet of Things

Information Networks

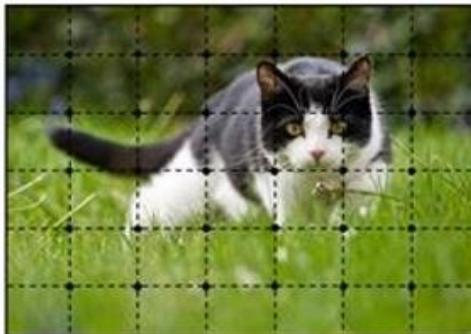
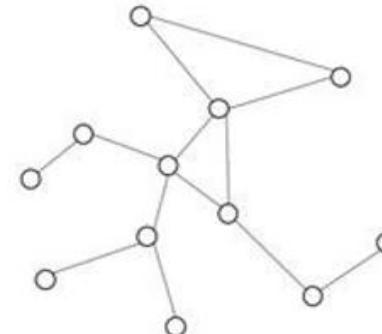


Logistic Networks

Graphs are Everywhere

Challenges and Methods

- **Challenges:** Graphs are typical non-Euclidean data, thus it is hard to learn effective numeric features for graphs

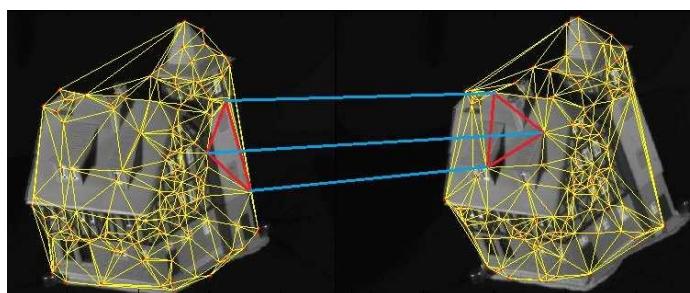


- **State-of-The-Art Methods:**

- **Graph Embeddings:** Represent the characteristics of graphs in a low dimensional vector space
- **Graph Kernels:** Compute the similarity between graphs in a high dimensional Hilbert space, better preserve structure information
- **Graph Convolutional Networks:** Generalize the convolution operation of CNNs to graphs, provide end-to-end learning framework

Graph Kernels

- **R-convolution:** The widely used framework to define graph kernels, defined by decomposing graphs into substructures and then measuring the isomorphism between them
- **Drawbacks of R-convolution Graph Kernels:** Ignore the correspondence information between substructures, thus cannot reflect precise similarity measures



- **Alignment or Matching Graph Kernels:** Integrate the vertex/edge correspondence information into the kernel computation, the correspondence is usually not transitive, thus are not Positive Definite (pd)

Outline

Background

Our Methods

Experiments

The Objective of This Work

■ Develop New Alignment Kernels:

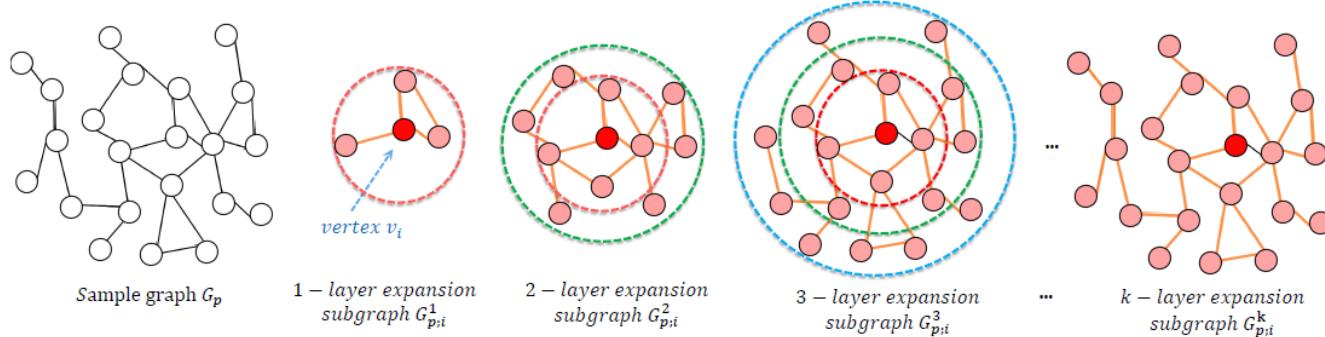
- Overcome the Drawback of Ignoring Correspondence Information
- Guarantee the Transitivity between Aligned Vertices
- Guarantee the Positive Definite

■ The Ideas:

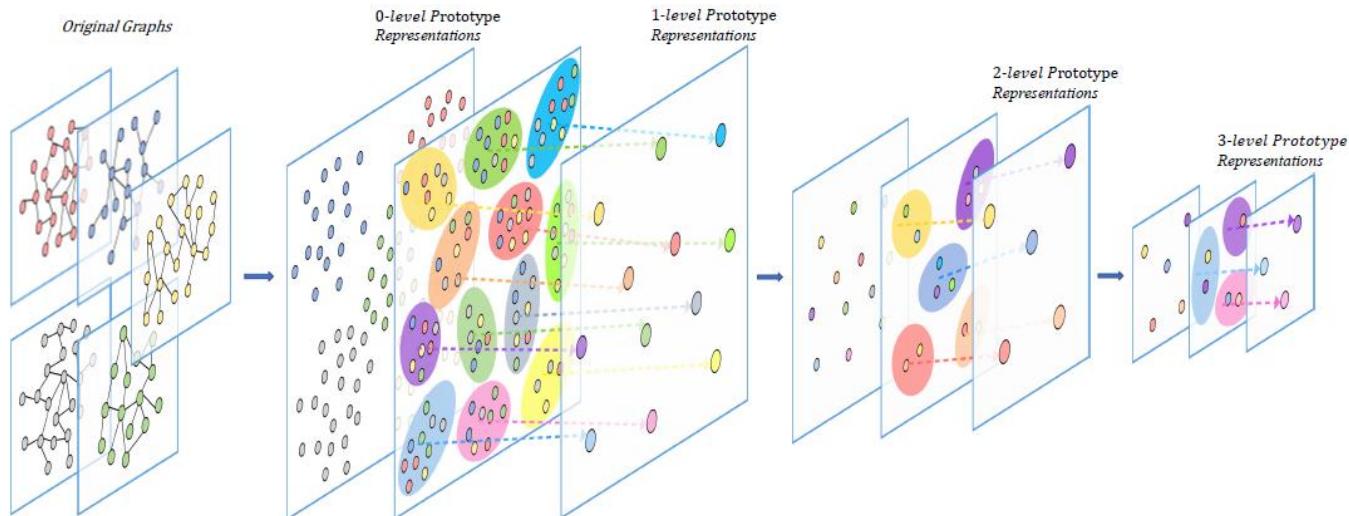
- Construct A Family of Hierarchical Prototype Representations
- Align Each Individual Graph Structure to the Same Prototype Representation Sets of Different Levels
- Define the Kernels by Counting the Number of the Hierarchically Aligned Vertex Pairs

The Prototype Representations

■ Initialize The Vectorial Representations of Vertices: Depth-based (DB) Complexity Traces of Vertices



■ Hierarchical Prototype Representations: Hierarchically employ the k-means clustering method on the DB complexity traces



The Proposed Kernel

- **The Correspondence Matrix:** Record the correspondence information of each graph G_p to the k-level prototype representations

$$M_p^{h,k}(i, n) = \begin{cases} 1 & \text{if } R_p^{h,k}(i, n) \text{ is the smallest} \\ & \text{element in row } n, \text{ and } |\mathcal{S}_i^k| \neq 0; \\ 0 & \text{otherwise.} \end{cases}$$

- **The Proposed Kernel:** Counting the numbers of the transitive aligned vertex pairs between a pair of graphs G_p and G_q

$$k_{\text{HTAK}}^{(H)}(G_p, G_q) = \sum_{h=1}^H \sum_{k=1}^K \sum_{i=1}^{|V_p|} \sum_{j=1}^{|V_q|} \mathcal{M}_{p;q}^{(h,k)}(i, j)$$

Outline

Background

Our Methods

Experiments

Classification Evaluations on Benchmark Datasets

■ The Benchmark Datasets:

Table 1. Information of the graph based computer vision (CV), bioinformatics (Bio), and social network (SN) datasets.

Datasets	BAR31	BSPHERE31	GEOD31	MUTAG	NCI1	CATH2	COLLAB	IMDB-B	IMDB-M
Max # vertices	220	227	380	28	111	568	492	136	89
Mean # vertices	95.42	99.83	57.42	17.93	29.87	308.03	74.49	19.77	13.00
# graphs	300	300	300	188	4110	190	5000	1000	1500
# classes	15	15	15	2	2	2	3	2	3
Description	CV	CV	CV	Bio	Bio	Bio	SN	SN	SN

■ Comparisons with Graph Kernels:

Table 2. Classification Accuracy (In % \pm Standard Error) for Comparisons with Graph Kernels.

Datasets	BAR31	BSPHERE31	GEOD31	MUTAG	NCI1	CATH2	COLLAB	IMDB-B	IMDB-M
HTAK	71.00 \pm .45	62.90\pm.65	47.80\pm.49	87.32 \pm .60	79.01 \pm .14	87.89\pm.71	79.87\pm.15	72.89\pm.56	50.23 \pm .18
ASK	73.10 \pm .67	60.30 \pm .44	46.21 \pm .69	87.50 \pm .65	78.47 \pm .12	78.52 \pm .67	77.53 \pm .31	70.38 \pm .72	50.12 \pm .51
WLSK	58.53 \pm .53	42.10 \pm .68	38.20 \pm .68	82.88 \pm .57	84.77 \pm .13	67.36 \pm .63	77.39 \pm .35	71.88 \pm .77	49.50 \pm .49
SPGK	55.73 \pm .44	48.20 \pm .76	38.40 \pm .65	83.38 \pm .81	74.21 \pm .30	81.89 \pm .63	58.80 \pm .20	71.26 \pm 1.04	51.33 \pm .57
CORE SP	—	—	—	88.29 \pm 1.55	73.46 \pm .32	—	—	72.62 \pm .59	49.43 \pm .42
GCGK	23.40 \pm .60	18.80 \pm .50	22.36 \pm .55	82.04 \pm .39	63.72 \pm .12	73.68 \pm .09	—	—	—
JTQK	60.56 \pm .35	46.93 \pm .61	40.10 \pm .46	85.50 \pm .55	85.32\pm.14	68.70 \pm .69	76.85 \pm .40	72.45 \pm .81	50.33 \pm .49
PMGK	—	—	—	80.66 \pm .90	72.27 \pm .59	—	—	68.53 \pm .61	45.75 \pm .66
CORE PM	—	—	—	87.19 \pm 1.47	74.90 \pm .45	—	—	71.04 \pm .64	48.30 \pm 1.01
RetGK(MC)	—	—	—	—	—	—	73.60 \pm .30	71.00 \pm .60	46.70 \pm .60

The symbol - means that some approaches were not evaluated by the original authors.

■ Comparisons with Deep Learning Methods:

Table 3. Classification Accuracy (In % \pm Standard Error) for Comparisons with Deep Learning Methods.

Datasets	MUTAG	NCI1	COLLAB	IMDB-B	IMDB-M
HTAK	87.32 \pm .60	79.01\pm.14	79.87\pm.15	72.89\pm.56	50.23 \pm .18
DGCNN	85.83 \pm 1.66	74.44 \pm .47	73.76 \pm .49	70.03 \pm .86	47.83 \pm .85
PSGCNN	88.95\pm4.37	76.34 \pm 1.68	72.60 \pm 2.15	71.00 \pm 2.29	45.23 \pm 2.84
DCNN	66.98	56.61 \pm 1.04	52.11 \pm .71	49.06 \pm 1.37	33.49 \pm 1.42
DGK	82.66 \pm 1.45	62.48 \pm .25	73.09 \pm .25	66.96 \pm .56	44.55 \pm .52

Thank you !

This work is supported by the National Natural Science Foundation of China under Grants T2122020, 61976235, and 61602535.