
Least Squares Estimation Using Sketched Data with

Heteroskedastic Errors

ICML 2022

Sokbae (Simon) Lee, Columbia University

Serena Ng, Columbia University and NBER



Sketching

Want a sketch Ã = ΠA ∈ Rm×d that preserves features of

A ∈ Rn×d

Aim to have a much smaller m than n

Random Sampling:

rows in Ã are rows of A.

e.g., Bernoulli sampling; uniform sampling w or w/o

replacement; leverage score sampling

Random Projections:

rows in Ã are linear combinations of rows of A.

e.g., Gaussian; SRHT; Countsketch
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Literature: Algorithmic Perspective

The early works of Sarlos (2006), Drineas, Mahoney, and

Muthukrishnan (2006) and Drineas, Mahoney,

Muthukrishnan, and Sarlos (2011) consider sketching of

the least squares estimator from an algorithmic

perspective (worst case analysis with the fixed data).

See, e.g., Woodruff (2014), Drineas and Mahoney (2018)

and Martinsson and Tropp (2020) for a review.
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Literature: Statistical Perspective

However, recent works due to Ma, Mahoney, and Yu

(2015), Raskutti and Mahoney (2016), and Dobriban and

Liu (2019) show that an optimal worse-case error may not

yield an optimal mean-squared error.

This led to interest in better understanding the statistical

implications of sketching. For example, Geppert, Ickstadt,

Munteanu, Qudedenfeld, and Sohler (2017) considers

Bayesian estimation while Ahfock, Astle, and Richardson

(2020) and Ma, Zhang, Xing, Ma, and Mahoney (2020)

provide asymptotic distribution theory for the sketched

least squares estimators under homoskedasticity.
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Regression Model

Given i.i.d. observations {(yi ,Xi) : i = 1, . . . , n}, we

consider a linear regression model:

y = Xβ0 + e, E(Xe) = 0

√
n(β̂OLS − β0)→d N(0,V1) as n→∞, where V1 is the

sandwich variance defined as

V1 := [E(XiX
T
i )]−1E(e2i XiX

T
i )[E(XiX

T
i )]−1.

Under homoskedasticity, V1 becomes

V0 := E(e2i )[E(XiX
T
i )]−1.
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Sketched OLS

A sketch of the data (y ,X ) is (ỹ , X̃ ), where ỹ = Πy ,

X̃ = ΠX , and Π is usually an m × n random matrix.

The sketched least squares estimator is

β̃OLS := (X̃T X̃ )−1X̃T ỹ .
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Regularity conditions

Assumption

(i) The data Dn := {(yi ,Xi) ∈ R1+p : i = 1, . . . , n} are

independent and identically distributed (i.i.d.).

Furthermore, X has singular value decomposition

X = UXΣXV
T
X .

(ii) E(y 4
i ) <∞, E(‖Xi‖4) <∞, and E(XiX

T
i ) has full rank

p.

(iii) The random matrix Π is independent of Dn.

(iv) m = mn →∞ but m/n→ 0 as n→∞, while p is fixed.
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Two Leading Examples

For simplicity, we focus on Bernoulli sampling (BS) from

Random Sampling and Countsketch (CS) from Random

Projections.

Bernoulli sampling (BS): Π =
√

n
m
B , where B is a

diagonal sampling matrix of i.i.d. Bernoulli random

variables with success probability m/n.

Countsketch (CS) : only one non-zero entry in each

column of Π. The non-zero entry takes on value

{+1,−1} randomly drawn with equal probability, and is

located uniformly at random for each column.
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Asymptotic Normality

Theorem (OLS)

Let Assumption 1 hold and E(eiXi) = 0.

(i) Under BS, m1/2(β̃OLS − β̂OLS )→d N(0,V1).

(ii) Under CS, m1/2(β̃OLS − β̂OLS )→d N(0,V0).

Theorem 1 indicates that both sampling schemes yield

asymptotically normal estimates, but for different reasons have

different asymptotic variances.
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Practical Inference

In applications, researchers would like to test a hypothesis

about β0 using a sketched estimate, and our results

provide all the quantities required for inference.

Since m/n→ 0,

m1/2(β̃ − β̂ ) = m1/2(β̃ − β0)− (m/n)1/2 n1/2(β̂ − β0)

= m1/2(β̃ − β0) + op(1).

Then, asymptotic normality of m1/2(β̃ − β̂) provides a

guide to conduct inference for β0:

Ṽ−1/2
m (β̃OLS − β0) ≈ N(0, Ip),

where the form of Ṽm will be given below.
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Monte Carlo Experiments

(1) (2) (3) (4)

Size Power

s.e.0 s.e.1 s.e.0 s.e.1

(i) Homoskedastic Design

bernoulli 0.046 0.050 0.490 0.496

uniform 0.047 0.052 0.489 0.490

leverage 0.045 0.053 0.483 0.513

countsketch 0.049 0.051 0.479 0.489

srht 0.056 0.061 0.492 0.498

srft 0.055 0.057 0.484 0.489

(ii) Heteroskedastic Design

bernoulli 0.310 0.047 0.713 0.436

uniform 0.301 0.053 0.719 0.435

leverage 0.183 0.051 0.727 0.529

countsketch 0.054 0.057 0.813 0.812

srht 0.054 0.056 0.804 0.809

srft 0.050 0.052 0.799 0.806
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