How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative

Ahmed M. Alaa, Boris van Breugel, Evgeny S. Saveliev, and Mihaela van der Schaar

Evaluating generative models

- ullet Synthetic data can be sampled from **generative models** of P(X,Y)
- How do we know if the synthetic data is of a high quality? What does "quality" mean?

Discriminative models

Generative models

$$X \longrightarrow P(Y \mid X = x) \longrightarrow Y$$

$$\begin{array}{c|c}
P(X,Y) & 0 & 1 & 2 & 3 \\
\hline
0 & 1 & 2 & 3 \\
\hline
2 & 7 & 8 & 9 \\
\hline
6 & 7 & 8 & 9
\end{array}$$

■ Validation against ground-truth labels

■ No ground-truth

Not all models have explicit likelihoods!

Our goal: A model- and domain-agnostic evaluation metric for generative models

A three-dimensional sample-level metric

- A model's performance can be viewed as a point in a 3D space...
 - Fidelity: How "good" the synthetic samples are?
 - **Diversity:** How much of the real data is covered?
 - **Generalization:** How often does the model copy training data?
- Each sample is evaluated w.r.t each of the above criteria
- Model performance = average performance over samples

Evaluating *Fidelity* through α -Precision

Builds on the precision-recall analysis framework proposed in [Sajjadi et al, 2018]

 \mathcal{S}_r^{α} = Minimum-volume α -support of real data distribution

α-Precision

$$P_{\alpha} = \mathbb{P}(X_g \in \mathcal{S}_r^{\alpha})$$

The fraction of synthetic Samples that resemble the α most "typical" samples in real data \blacksquare α -Precision measures sample *fidelity*.

Evaluating *Diversity* through β-*Recall*

Builds on the precision-recall analysis framework proposed by

 \mathcal{S}_g^{β} = Minimum-volume β -support of synthetic data distribution

β-Precision

$$R_{\beta} = \mathbb{P}(X_r \in \mathcal{S}_g^{\beta})$$

The fraction of real samples covered by the β most typical synthetic samples

 \blacksquare **\beta-Recall** measures sample *diversity*.

Evaluating Generalization through the Authenticity metric

- We can generate diverse and high-fidelity data by re-sampling real data (memorization)
- How to test if a model is truly synthesizing new samples?

Authenticity metric

$$\mathbb{P}(d(X_{g,j}, \mathcal{D}_{real}) < d(X_{r,i^*}, \mathcal{D}_{real}/\{X_{r,i^*}\}))$$

How often does the model generate samples that are closer to real data than the closest real sample?

Post-hoc model auditing

Remove samples that are memorized or imprecise

