Geometric Multimodal Contrastive Representation Learning Petra Poklukar*,1, Miguel Vasco*,2, Hang Yin1, Francisco S. Melo2, Ana Paiva2, Danica Kragic1 ¹ KTH Royal Institute of Technology, Stockholm, Sweden ² INESC-ID & Instituto Superior Técnico, University of Lisbon, Portugal ^{*} Equal contribution Multimodal Observation Latent Representation **Downstream** Task (Incomplete) Observation Latent Representation - Multimodal Observations - Image Observations **MFM** [1] **MVAE** [2] MUSE [3] - [1] Tsai, Yao-Hung Hubert, et al."Learning Factorized Multimodal Representations." ICLR (2019) - [2] Wu, Mike, and Noah Goodman. "Multimodal generative models for scalable weakly-supervised learning." NeurIPS (2018) - [3] Vasco, Miguel, et al. "How to Sense the World: Leveraging Hierarchy in Multimodal Perception for Robust Reinforcement Learning Agents." AAMAS (2022) (Incomplete) Multimodal Observation Latent Representation **Downstream** Task #### Contribution How to learn multimodal representations for robust downstream performance with missing modality information? - Geometric Multimodal Contrastive (GMC) representation learning framework; - Scalable to large number of modalities; - Easy to integrate into existing architectures; - State-of-the-art performance with missing modalities. # GMC: Intuition ## GMC: Intuition Align complete and modality-specific representation #### GMC: Intuition Align complete and modality-specific representation Contrast with different representations #### Geometrical Multimodal Contrastive (GMC) 5 #### Evaluation #### **Unsupervised Learning** Dataset: MHD [4] Modalities: 4 Downstream: Classification #### **Supervised Learning** Dataset: CMU-MOSEI [5] Modalities: 3 Downstream: Classification #### Reinforcement Learning Dataset: Multimodal Pendulum [6] Modalities: 2 Downstream: Control - [4] Vasco, Miguel, et al. "Leveraging hierarchy in multimodal generative models for effective cross-modality inference." Neural Networks (2022) - [5] Zadeh, Amir, and Paul Pu. "Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph." ACL (2018) - [6] Silva, Rui, et al. "Playing Games in the Dark: An Approach for Cross-Modality Transfer in Reinforcement Learning." AAMAS (2020) # Evaluation: Unsupervised Downstream Performance: Classification Table 1. Performance of different multimodal representation methods in the MHD dataset, in a downstream classification task under complete and partial observations. Accuracy (%) results averaged over 5 independent runs. Higher is better. | Input | MVAE ¹ | MMVAE | Nexus | MUSE | MFM | GMC (Ours) | |----------------------|-------------------|-------------------|------------------|--------------------|------------------|------------------| | Complete $(x_{1:4})$ | 100.0 ± 0.00 | 99.81 ± 0.21 | 99.98 ± 0.05 | $99.99 \pm 4e{-5}$ | 100.0 ± 0.00 | 100.0 ± 0.00 | | Image (x_1) | 77.94 ± 3.16 | 94.63 ± 2.61 | 95.89 ± 0.34 | 79.37 ± 2.75 | 34.66 ± 6.48 | 99.75 ± 0.03 | | Sound (x_2) | 61.75 ± 4.59 | 69.43 ± 26.43 | 39.07 ± 5.82 | 41.39 ± 0.18 | 10.07 ± 0.20 | 93.04 ± 0.45 | | Trajectory (x_3) | 10.03 ± 0.06 | 95.33 ± 2.56 | 98.55 ± 0.34 | 89.49 ± 2.44 | 25.61 ± 5.41 | 99.96 ± 0.02 | | Label (x_4) | 100.0 ± 0.00 | 87.99 ± 7.49 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | # Evaluation: Unsupervised Geometric Alignment: UMAP [7] - Multimodal Observations - Image Observations MFM (Tsai et al., 2019) MVAE (Wu & Goodman, 2019) MUSE (Vasco et al., 2022) MMVAE (Shi et al., 2022) GMC (Ours) [7] McInnes, Leland, et al. "UMAP: Uniform Manifold Approximation and Projection." Journal of Open Source Software (2018) # Evaluation: Unsupervised Geometric Alignment: DCA [8] Table 2. DCA score of the models in the MHD dataset, evaluating the geometric alignment of complete representations $z_{1:4}$ and modality-specific ones $\{z_1, \ldots, z_4\}$ used as R and E inputs in DCA, respectively. The score is averaged over 5 independent runs. Higher is better. | \overline{R} | E | MVAE ¹ | MMVAE | Nexus | MUSE | MFM | GMC (Ours) | |----------------------|--------------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------------------| | Complete $(z_{1:4})$ | Image (z_1) | 0.01 ± 0.01 | 0.21 ± 0.29 | 0.00 ± 0.00 | 0.54 ± 0.44 | 0.00 ± 0.00 | $\boldsymbol{0.96 \pm 0.02}$ | | Complete $(z_{1:4})$ | Sound (z_2) | 0.00 ± 0.00 | $\boldsymbol{0.87 \pm 0.16}$ | | Complete $(z_{1:4})$ | Trajectory (z_3) | 0.00 ± 0.00 | 0.01 ± 0.01 | 0.08 ± 0.02 | 0.00 ± 0.00 | 0.00 ± 0.00 | $\boldsymbol{0.86 \pm 0.05}$ | | Complete $(z_{1:4})$ | Label (z_4) | 0.99 ± 0.01 | 0.74 ± 0.22 | 0.43 ± 0.05 | 0.93 ± 0.05 | 0.85 ± 0.06 | $\boldsymbol{1.00 \pm 0.00}$ | [8] Poklukar, Petra, et al. "Delaunay Component Analysis for Evaluation of Data Representations." ICLR (2022) # Evaluation: Supervised #### Downstream Performance: Classification Table 4. Performance of different multimodal representation methods in the CMU-MOSEI dataset, in a classification task under complete and partial observations. Results averaged over 5 independent runs. Arrows indicate the direction of improvement. | Metric | Baseline | GMC (Ours) | |---------------|--------------------------------|-------------------| | MAE (\dagger) | 0.643 ± 0.019 | 0.634 ± 0.008 | | Cor (†) | $\boldsymbol{0.664 \pm 0.004}$ | 0.653 ± 0.004 | | F1 (†) | $\boldsymbol{0.809 \pm 0.003}$ | 0.798 ± 0.008 | | Acc (%, ↑) | 80.75 ± 00.28 | 79.73 ± 00.69 | (a) Complete Observations $(x_{1:3})$ | Metric | Baseline | GMC (Ours) | |---------------|-------------------|--------------------------------| | MAE (\lambda) | 0.873 ± 0.065 | 0.837 ± 0.008 | | Cor (†) | 0.090 ± 0.062 | $\boldsymbol{0.256 \pm 0.007}$ | | F1 (†) | 0.622 ± 0.122 | $\boldsymbol{0.676 \pm 0.015}$ | | Acc (%, ↑) | 53.17 ± 09.47 | 65.59 ± 00.62 | (c) Audio Observations (x_2) | Metric | Baseline | GMC (Ours) | |---------------|-------------------|-------------------------------------| | MAE (\lambda) | 0.805 ± 0.028 | $\boldsymbol{0.712 \pm 0.015}$ | | Cor (†) | 0.427 ± 0.061 | $\boldsymbol{0.590 \pm 0.013}$ | | F1 (†) | 0.713 ± 0.086 | $\boldsymbol{0.779 \pm 0.005}$ | | Acc (%, ↑) | 66.53 ± 09.86 | $\textbf{77.85} \pm \textbf{00.36}$ | (b) Text Observations (x_1) | Metric | Baseline | GMC (Ours) | |---------------------|-------------------|--------------------------------| | MAE (↓) | 1.025 ± 0.164 | 0.845 ± 0.010 | | Cor (†) | 0.110 ± 0.060 | $\boldsymbol{0.278 \pm 0.011}$ | | F1 (†) | 0.574 ± 0.095 | $\boldsymbol{0.655 \pm 0.003}$ | | Acc $(\%,\uparrow)$ | 44.33 ± 09.40 | 65.02 ± 00.28 | (d) Video Observations (x_3) #### Evaluation: RL Downstream Performance: Acting only with sound observations **MVAE** (Wu & Goodman, 2018) MUSE (Vasco et al., 2022) **GMC** (Ours) # Geometric Multimodal Contrastive Representation Learning Petra Poklukar*, Miguel Vasco*, Hang Yin, Francisco S. Melo, Ana Paiva, Danica Kragic Read Paper Get the Code