Geometric Multimodal Contrastive Representation Learning

Petra Poklukar*,1, Miguel Vasco*,2, Hang Yin1, Francisco S. Melo2, Ana Paiva2, Danica Kragic1

¹ KTH Royal Institute of Technology, Stockholm, Sweden

² INESC-ID & Instituto Superior Técnico, University of Lisbon, Portugal

^{*} Equal contribution

Multimodal Observation

Latent Representation **Downstream** Task

(Incomplete) Observation

Latent Representation

- Multimodal Observations
- Image Observations

MFM [1]

MVAE [2]

MUSE [3]

- [1] Tsai, Yao-Hung Hubert, et al."Learning Factorized Multimodal Representations." ICLR (2019)
- [2] Wu, Mike, and Noah Goodman. "Multimodal generative models for scalable weakly-supervised learning." NeurIPS (2018)
- [3] Vasco, Miguel, et al. "How to Sense the World: Leveraging Hierarchy in Multimodal Perception for Robust Reinforcement Learning Agents." AAMAS (2022)

(Incomplete) Multimodal Observation

Latent Representation

Downstream Task

Contribution

How to learn multimodal representations for robust downstream performance with missing modality information?

- Geometric Multimodal Contrastive (GMC) representation learning framework;
- Scalable to large number of modalities;
- Easy to integrate into existing architectures;
- State-of-the-art performance with missing modalities.

GMC: Intuition

GMC: Intuition

Align complete and modality-specific representation

GMC: Intuition

Align complete and modality-specific representation

Contrast with different representations

Geometrical Multimodal Contrastive (GMC)

5

Evaluation

Unsupervised Learning

Dataset: MHD [4]

Modalities: 4

Downstream: Classification

Supervised Learning

Dataset: CMU-MOSEI [5]

Modalities: 3

Downstream: Classification

Reinforcement Learning

Dataset: Multimodal Pendulum [6]

Modalities: 2

Downstream: Control

- [4] Vasco, Miguel, et al. "Leveraging hierarchy in multimodal generative models for effective cross-modality inference." Neural Networks (2022)
- [5] Zadeh, Amir, and Paul Pu. "Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph." ACL (2018)
- [6] Silva, Rui, et al. "Playing Games in the Dark: An Approach for Cross-Modality Transfer in Reinforcement Learning." AAMAS (2020)

Evaluation: Unsupervised

Downstream Performance: Classification

Table 1. Performance of different multimodal representation methods in the MHD dataset, in a downstream classification task under complete and partial observations. Accuracy (%) results averaged over 5 independent runs. Higher is better.

Input	MVAE ¹	MMVAE	Nexus	MUSE	MFM	GMC (Ours)
Complete $(x_{1:4})$	100.0 ± 0.00	99.81 ± 0.21	99.98 ± 0.05	$99.99 \pm 4e{-5}$	100.0 ± 0.00	100.0 ± 0.00
Image (x_1)	77.94 ± 3.16	94.63 ± 2.61	95.89 ± 0.34	79.37 ± 2.75	34.66 ± 6.48	99.75 ± 0.03
Sound (x_2)	61.75 ± 4.59	69.43 ± 26.43	39.07 ± 5.82	41.39 ± 0.18	10.07 ± 0.20	93.04 ± 0.45
Trajectory (x_3)	10.03 ± 0.06	95.33 ± 2.56	98.55 ± 0.34	89.49 ± 2.44	25.61 ± 5.41	99.96 ± 0.02
Label (x_4)	100.0 ± 0.00	87.99 ± 7.49	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00

Evaluation: Unsupervised

Geometric Alignment: UMAP [7]

- Multimodal Observations
- Image Observations

MFM (Tsai et al., 2019)

MVAE (Wu & Goodman, 2019)

MUSE (Vasco et al., 2022)

MMVAE (Shi et al., 2022)

GMC (Ours)

[7] McInnes, Leland, et al. "UMAP: Uniform Manifold Approximation and Projection." Journal of Open Source Software (2018)

Evaluation: Unsupervised

Geometric Alignment: DCA [8]

Table 2. DCA score of the models in the MHD dataset, evaluating the geometric alignment of complete representations $z_{1:4}$ and modality-specific ones $\{z_1, \ldots, z_4\}$ used as R and E inputs in DCA, respectively. The score is averaged over 5 independent runs. Higher is better.

\overline{R}	E	MVAE ¹	MMVAE	Nexus	MUSE	MFM	GMC (Ours)
Complete $(z_{1:4})$	Image (z_1)	0.01 ± 0.01	0.21 ± 0.29	0.00 ± 0.00	0.54 ± 0.44	0.00 ± 0.00	$\boldsymbol{0.96 \pm 0.02}$
Complete $(z_{1:4})$	Sound (z_2)	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	$\boldsymbol{0.87 \pm 0.16}$
Complete $(z_{1:4})$	Trajectory (z_3)	0.00 ± 0.00	0.01 ± 0.01	0.08 ± 0.02	0.00 ± 0.00	0.00 ± 0.00	$\boldsymbol{0.86 \pm 0.05}$
Complete $(z_{1:4})$	Label (z_4)	0.99 ± 0.01	0.74 ± 0.22	0.43 ± 0.05	0.93 ± 0.05	0.85 ± 0.06	$\boldsymbol{1.00 \pm 0.00}$

[8] Poklukar, Petra, et al. "Delaunay Component Analysis for Evaluation of Data Representations." ICLR (2022)

Evaluation: Supervised

Downstream Performance: Classification

Table 4. Performance of different multimodal representation methods in the CMU-MOSEI dataset, in a classification task under complete and partial observations. Results averaged over 5 independent runs. Arrows indicate the direction of improvement.

Metric	Baseline	GMC (Ours)
MAE (\dagger)	0.643 ± 0.019	0.634 ± 0.008
Cor (†)	$\boldsymbol{0.664 \pm 0.004}$	0.653 ± 0.004
F1 (†)	$\boldsymbol{0.809 \pm 0.003}$	0.798 ± 0.008
Acc (%, ↑)	80.75 ± 00.28	79.73 ± 00.69

(a) Complete Observations $(x_{1:3})$

Metric	Baseline	GMC (Ours)
MAE (\lambda)	0.873 ± 0.065	0.837 ± 0.008
Cor (†)	0.090 ± 0.062	$\boldsymbol{0.256 \pm 0.007}$
F1 (†)	0.622 ± 0.122	$\boldsymbol{0.676 \pm 0.015}$
Acc (%, ↑)	53.17 ± 09.47	65.59 ± 00.62

(c) Audio Observations (x_2)

Metric	Baseline	GMC (Ours)
MAE (\lambda)	0.805 ± 0.028	$\boldsymbol{0.712 \pm 0.015}$
Cor (†)	0.427 ± 0.061	$\boldsymbol{0.590 \pm 0.013}$
F1 (†)	0.713 ± 0.086	$\boldsymbol{0.779 \pm 0.005}$
Acc (%, ↑)	66.53 ± 09.86	$\textbf{77.85} \pm \textbf{00.36}$

(b) Text Observations (x_1)

Metric	Baseline	GMC (Ours)
MAE (↓)	1.025 ± 0.164	0.845 ± 0.010
Cor (†)	0.110 ± 0.060	$\boldsymbol{0.278 \pm 0.011}$
F1 (†)	0.574 ± 0.095	$\boldsymbol{0.655 \pm 0.003}$
Acc $(\%,\uparrow)$	44.33 ± 09.40	65.02 ± 00.28

(d) Video Observations (x_3)

Evaluation: RL

Downstream Performance: Acting only with sound observations

MVAE (Wu & Goodman, 2018)

MUSE (Vasco et al., 2022)

GMC (Ours)

Geometric Multimodal Contrastive Representation Learning

Petra Poklukar*, Miguel Vasco*, Hang Yin, Francisco S. Melo, Ana Paiva, Danica Kragic

Read Paper

Get the Code

