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What is (good) model uncertainty?



Model Uncertainty (Epistemic Uncertainty) vs Data Noise (Aleatoric Uncertainty)

Bayesian Uncertainty Framework:

Dtrain := {
(
x train
i , y train

i

)
} i.i.d samples from

y(x) = f (x) + ε

f ∼ pf , ε|x ∼ N (0, σ2
n),

Posterior for f: P[f |Dtrain]

“model uncertainty” V[f (x)|Dtrain] =: σ2
f (x)
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Prior Work. Capturing Model Uncertainty for Neural Networks

◦ Bayesian neural networks (BNNs)

are expensive to train, careful HP tuning needed
→ rarely used in practice [WRV+20]

◦ Markov chain Monte Carlo (MCMC) methods [DJW+20]

◦ Variational inference [Gra11, BCKW15, HLA15]

◦ Linearized Laplace (LL) [FLHLT19]

◦ Neural linear models (NLM) [OR19]

◦ Ensemble methods

often don’t satisfy desired properties of model uncertainty!

◦ Monte Carlo dropout (MCDO) [GG16]

◦ Deep ensembles (DE) [LPB17] and hyper deep ensembles (HDE) [WSTJ20]

We introduce NOMU to address these limitations.
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Desiderata: What is Good Model Uncertainty (MU)?

D1. Non-negativity of MU, i.e., σ̂f ≥ 0.

(Prop. D.1.a.)

D2. Zero MU at training points, i.e.,

σ̂f (x train) = 0. (Prop. D.2.c.)

D3. Larger MU at points with larger “distance”

to training data.

D4. Features of x that have high predictive

power on the training set have a large

effect on the “distance” metric in D3. D4

D5. MU vanishes for training data to infinity,

i.e., limntrain→∞ σ̂f ≡ 0. (Prop. D.5.a.)

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

NOMU:  ̂f± 2⋅σ̂f 
MCDO:  ̂f± 4⋅σ̂f 

NOMU and a benchmark MC dropout. Shaded areas are MU

bounds. The unknown true function is shown as black solid line,

training points as black dots.

Many state-of-the-art methods don’t satisfy all of these!
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1

0

1

2 NOMU: 3 f

NOMU:  f ± 3 f 

NOMU fulfills D4. Shaded areas are MU bounds. The unknown

true function is shown as black solid line, training points as black

dots.

Many state-of-the-art methods don’t satisfy all of these!
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NOMU



NOMU

1. NN-Architecture 2. Loss function (output dim q = 1)

NN θ : X → Y × R≥0

x 7→ NN θ(x) := (f̂ (x), σ̂f (x))

x ∈ X

...

...

...

...

. . .

. . .

. . .

. . .

. . .

. . .

...

...

f̂ (x) ∈ Y

σ̂f (x) ∈ R≥0

(D4)

f̂ -network

σ̂f -network

L(NN θ) :=

+ µsqr ·
∑

(x,y)∈Dtrain

(σ̂f (x))2

+ µexp ·
∫
X

e−cexp·σ̂f (x) dx

◦ NOMU’s Uncertainty bounds:

f̂ (x)± cσ̂f (x), for input x ∈ X .
◦ NOMU’s Hyperparameters: (µsqr , µexp, cexp)
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Experiments



Regression: BNN Test Bed and UCI Data Sets.

BNN Test Bed: Noiseless Regression.

Table 1: Average NLL and a 95% CI over 200

BNN samples. Winners are marked in gray.

Function NOMU GP MCDO DE HDE

BNN1D -1.65±0.10 -1.08±0.22 -0.34±0.23 -0.38±0.36 8.47±1.00

BNN2D -1.16±0.05 -0.52±0.11 -0.33±0.13 -0.77±0.07 9.11±0.39

BNN5D -0.37±0.02 -0.33±0.02 -0.05±0.04 -0.13±0.03 8.41±1.00

UCI Data Sets: Noisy Regression.

Table 2: Average NLL and a 95% normal-CI

over 20 runs for UCI data sets. Winners are

marked in gray.

Dataset NOMU DE MCDO MCDO2 LL NLM-HPO NLM

Boston 2.68 ±0.11 2.41 ±0.49 2.46 ±0.11 2.40 ±0.07 2.57 ±0.09 2.58 ±0.17 3.63 ±0.39

Concrete 3.05 ±0.06 3.06 ±0.35 3.04 ±0.03 2.97 ±0.03 3.05 ±0.07 3.11 ±0.09 3.12 ±0.09

Energy 0.77 ±0.06 1.38 ±0.43 1.99 ±0.03 1.72 ±0.01 0.82 ±0.05 0.69 ±0.05 0.69 ±0.05

Kin8nm -1.08 ±0.01 -1.20 ±0.03 -0.95 ±0.01 -0.97 ±0.00 -1.23 ±0.01 -1.12 ±0.01 -1.13 ±0.01

Naval -5.63 ±0.39 -5.63 ±0.09 -3.80 ±0.01 -3.91 ±0.01 -6.40 ±0.11 -7.36 ±0.15 -7.35 ±0.01

CCPP 2.79 ±0.01 2.79 ±0.07 2.80 ±0.01 2.79 ±0.01 2.83 ±0.01 2.79 ±0.01 2.79 ±0.01

Protein 2.79 ±0.01 2.83 ±0.03 2.89 ±0.00 2.87 ±0.00 2.89 ±0.00 2.78 ±0.01 2.81 ±0.00

Wine 1.08 ±0.04 0.94 ±0.23 0.93 ±0.01 0.92 ±0.01 0.97 ±0.03 0.96 ±0.01 1.48 ±0.09

Yacht 1.38 ±0.28 1.18 ±0.41 1.55 ±0.05 1.38 ±0.01 1.01 ±0.09 1.17 ±0.13 1.13 ±0.09

6/8



Regression: BNN Test Bed and UCI Data Sets.

BNN Test Bed: Noiseless Regression.

Table 1: Average NLL and a 95% CI over 200

BNN samples. Winners are marked in gray.

Function NOMU GP MCDO DE HDE

BNN1D -1.65±0.10 -1.08±0.22 -0.34±0.23 -0.38±0.36 8.47±1.00

BNN2D -1.16±0.05 -0.52±0.11 -0.33±0.13 -0.77±0.07 9.11±0.39

BNN5D -0.37±0.02 -0.33±0.02 -0.05±0.04 -0.13±0.03 8.41±1.00

UCI Data Sets: Noisy Regression.

Table 2: Average NLL and a 95% normal-CI

over 20 runs for UCI data sets. Winners are

marked in gray.

Dataset NOMU DE MCDO MCDO2 LL NLM-HPO NLM

Boston 2.68 ±0.11 2.41 ±0.49 2.46 ±0.11 2.40 ±0.07 2.57 ±0.09 2.58 ±0.17 3.63 ±0.39

Concrete 3.05 ±0.06 3.06 ±0.35 3.04 ±0.03 2.97 ±0.03 3.05 ±0.07 3.11 ±0.09 3.12 ±0.09

Energy 0.77 ±0.06 1.38 ±0.43 1.99 ±0.03 1.72 ±0.01 0.82 ±0.05 0.69 ±0.05 0.69 ±0.05

Kin8nm -1.08 ±0.01 -1.20 ±0.03 -0.95 ±0.01 -0.97 ±0.00 -1.23 ±0.01 -1.12 ±0.01 -1.13 ±0.01

Naval -5.63 ±0.39 -5.63 ±0.09 -3.80 ±0.01 -3.91 ±0.01 -6.40 ±0.11 -7.36 ±0.15 -7.35 ±0.01

CCPP 2.79 ±0.01 2.79 ±0.07 2.80 ±0.01 2.79 ±0.01 2.83 ±0.01 2.79 ±0.01 2.79 ±0.01

Protein 2.79 ±0.01 2.83 ±0.03 2.89 ±0.00 2.87 ±0.00 2.89 ±0.00 2.78 ±0.01 2.81 ±0.00

Wine 1.08 ±0.04 0.94 ±0.23 0.93 ±0.01 0.92 ±0.01 0.97 ±0.03 0.96 ±0.01 1.48 ±0.09

Yacht 1.38 ±0.28 1.18 ±0.41 1.55 ±0.05 1.38 ±0.01 1.01 ±0.09 1.17 ±0.13 1.13 ±0.09

6/8



Noiseless Bayesian Optimization Motivation

◦ Goal: maximize an unknown

expensive-to-evaluate function.

Good

model uncertainty estimate is crucial!

◦ Take test functions in 5D-20D.

◦ Randomly sample 8 initial

points (xi , f (xi )) and let each algorithm

choose 64 further evaluation points (one

by one) using its upper UB as acquisition

function.

◦ Measure performance based on final

regret

|max
x∈X

f (x)− max
i∈{1,...,72}

f (xi )|/|max
x∈X

f (x)|.

. . . repeat for a number of seeds.

Table 3: BO results: average final regrets per

dimension and ranks for each individual

function (1=best to 7=worst).

Function NOMU GP MCDO DE HDE pGP RAND

Levy5D 1 1 6 3 3 4 7
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In a Nutshell

◦ Capturing model uncertainty for neural networks well is still an open problem.

◦ We propose NOMU, an optimization based method to characterize model

uncertainty.

◦ NOMU fulfills desirable characteristics of model uncertainty.

◦ NOMU performs as well or better than the state-of-the-art in noiseless regression

and Bayesian optimization.

Thank you for your time :)
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D4 “Metric Learning” Step Function back

◦ Step function:

f = R2 → R : (x1, x2) 7→

{
−1 if x1 < 0

1 if x1 ≥ 0.

◦ Important feature is x1.

◦ Output is independent of x2.

NOMU’s model uncertainty.
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Bayesian Optimization Motivation back
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