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Compositional Data with Many Zeros

• Recently, compositional data with a large proportion of zeros are prevalent

in practice; e.g., microbiome data are compositional, with a significant

portion (about 50 – 80%) of data being zeros.

• Dominant approach to compositional data is to take log-ratio transforms

(Aitchison geometry) but it does not allow zero values in the data.

• Researchers usually perturb those zeros slightly so that they all become

positive values (zero replacement), and then apply log-ratio transforms to

conduct data analysis.
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Main Contributions of Proposed Work

1. Point out a geometric improperness of “log-ratio transform after zero

replacement” to compositional data with many zeros.

2. Provide an alternative but natural view on compositional data with radial

transformation, and show that various kernel methods (kernel PCA, SVM,

kernel mean embedding,...) can be successfully applied to these data.

3. Better performance of the proposed method than log-ratio methods is

provided by various experimental results.
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Flaws of Zero Replacements + Aitchison Geometry

Some reported flaws:

• There are countless ways to replace zeros but there is no standard.

• Data analysis results are often too sensitive to the choice of the zero

replacement strategy.

Underlying premise of zero replacements:

It causes negligible alteration in the data

However, the Aitchison geometry tends to amplify a tiny movement near the

boundary of the simplex, incompatible with the premise above.

Therefore, the combination:

Zero replacements + Log-ratio transformation

does not work the way people want it to.
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Example: Two Convergent Sequences Do Not Converge

• Two sequence converging to the

same point on the boundary.

• We want that pn and qn should be

almost the same for all large n.

ilr(pn) and ilr(qn) diverge.
The Aitchison distance

∥ilr(pn)− ilr(qn)∥2R2 diverges.
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Radial Transformation and Equivalence of Function Spaces

Radial transformation

ψ : ∆d → Sd
≥0, x 7−→ x

∥x∥2

Here, Sd
≥0 denotes the nonnegative part of the hypersphere Sd ⊂ Rd+1.

Theorem (Equivalence of kernel mean embeddings)

The following diagram

P(∆d) HK◦ψ

P(Sd
≥0) HK

ψ∗ ψ∗

is commutative where the horizontal maps are kernel mean embeddings.

The theorem establishes an equivalence between kernel-based data analysis

between these two domains.
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Sphere Should Be Better Than Simplex

• Given a compositional data

x = (x1, . . . , xd+1) ∈ ∆d , it is clear

that xi/xj = cxi/cxj for all c > 0.

• It is natural to interpret

compositional data as radial

vectors!

1. There are a rich class of well-understood and easily computable kernels on

hyperspheres with desirable decay of eigenvalues.

2. The non-smooth boundary of the simplex makes it hard to apply

theoretical results of kernel methods on manifold data as those theory

often assume smoothness of manifold.
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Simulated Data

We generated high dimensional

compositional data in ∆d

(Zero proportion: about 40%).

Visualization in case d = 2.

kPCA projection plots (rbf kernel):

(a) radial transform (γ = 60)

(b) clr transform (γ = 0.005),

zeros replaced by 0.5xmin
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Conclusions

1. Data analysis based on

“zero-replacement + log-ratio transform”

might lose their justification as it distorts the original data significantly.

2. Kernel methods after the radial transform are successfully applied to

compositional data with many zeros, showing better performance than the

log-ratio transformations.

Please refer to our paper for more details, and more experimental results on the

other datasets.
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