

Decomposing Temporal High-Order Interactions via Latent ODEs

Shibo Li, Robert M. Kirby *and* Shandian Zhe School of Computing, University of Utah

Presenter: Shibo Li

shibo@cs.utah.edu

Background

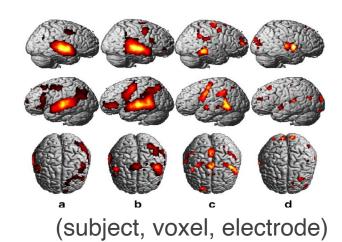
(High-order) Interactions in Real-world

(user, movie, episode)

(user, item, online-store)

(user, advertisement, page-section)

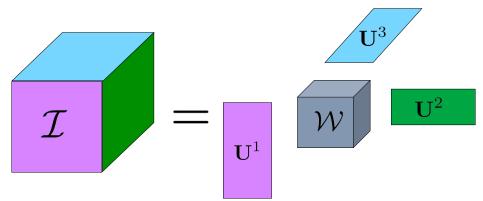
(user, user, location, message-type)



(patient, gene, condition)

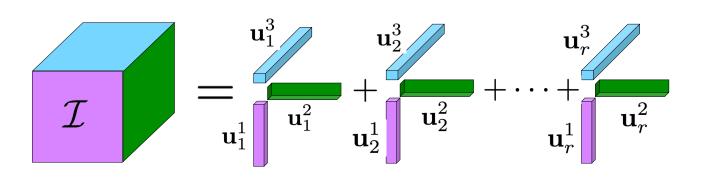
Background

Tensor Decomposition



$$d_1 imes \cdots imes d_K$$
 $\mathcal{I} = \mathcal{W} imes_1 \mathbf{U}^1 imes_2 \cdots imes_K \mathbf{U}^K$
 $r_1 imes \cdots imes r_K d_1 imes r_1$
 $d_K imes r_K$

Tucker, 1966



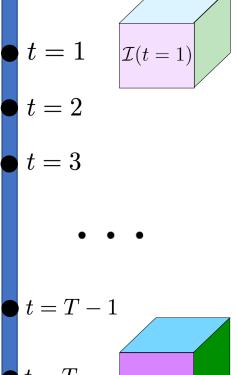
$$\mathcal{I} = \sum_{j=1}^r \lambda_j \cdot \mathbf{U}^1[:,j] \circ \ldots \circ \mathbf{U}^K[:,j]$$

CANDECOMP/PARAFAC (CP), Harshman, 1970

Motivation

• Temporal Interactions $\mathcal{I}(t)$

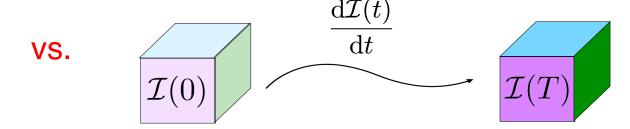
Discretized time



Our Contribution:

- THIS-ODE: A novel decomposing model of temporal high-order interactions.
- Leverage continuous timestamps, capture all kinds of complex temporal dynamics within interactions.
- Tractable inference with forward sensitivity analysis and time alignment/integral transform tricks.

Continuous time



Ours: THIS-ODE

Method

Temporal interaction as parametric latent ODE

$$\begin{cases} \frac{\mathrm{d}m_{\mathbf{i}}(t)}{\mathrm{d}t} = f\left(m_{\mathbf{i}}(t), \mathbf{v_i}, t\right) & \text{Dynamics} \\ m_{\mathbf{i}}(0) = \beta(\mathbf{v}_i) & \text{I.C.} \end{cases} \qquad \text{ODESolve} \\ m_{\mathbf{i}}(t) = m_{\mathbf{i}}(0) + \int_0^t f_{\boldsymbol{\theta}}(m_{\mathbf{i}}(s), \mathbf{v_i}, s) \mathrm{d}s \end{cases}$$

• Joint probability given $\mathcal{D} = \{(\mathbf{i}_1, t_1, y_1), \dots, (\mathbf{i}_N, t_N, y_N)\}$

$$p(\mathcal{U}, \nu, \mathcal{D}|\boldsymbol{\theta}) = \prod_{k=1}^{K} \prod_{j=1}^{d_k} \mathcal{N}(\mathbf{u}_j^k|\mathbf{0}, \mathbf{I}) \cdot \operatorname{Gam}(\nu|a_0, b_0) \cdot \prod_{n=1}^{N} \mathcal{N}(y_n|m_{\mathbf{i}_n}(t_n), \nu^{-1})$$

Prior of representations Prior noise precision / Probability of noisy observations

Note: the ODE parameters are implicitly located in the probability of observations

Method

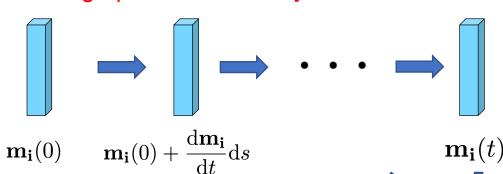
Why not auto-differentiation?

$$p(\mathcal{U}, \nu, \mathcal{D}|\boldsymbol{\theta}) = \prod\nolimits_{k=1}^K \prod\nolimits_{j=1}^{d_k} \mathcal{N}(\mathbf{u}_j^k|\mathbf{0}, \mathbf{I}) \cdot \mathrm{Gam}(\nu|a_0, b_0) \cdot \prod\nolimits_{n=1}^N \mathcal{N}(y_n|m_{\mathbf{i}_n}(t_n), \nu^{-1})$$

$$m_{\mathbf{i}}(t) = m_{\mathbf{i}}(0) + \int_0^t f_{\boldsymbol{\theta}}(m_{\mathbf{i}}(s), \mathbf{v_i}, s) ds$$

Given by ODE solvers

Computational graph constructed by ODE solvers



All the intermedia states needs to be saved to compute the gradients

Algorithm

Efficient computation of gradients with Forward Sensitivity

• Time alignment for efficient stochastic mini-batch optimization

$$\mathbf{h}_{\mathbf{i}_l}(t_l) = \mathbf{h}_{\mathbf{i}_l}(0) + \int_0^{t_l} \boldsymbol{\alpha} \left(\mathbf{h}_{\mathbf{i}_l}(\tau), \tau \right) d\tau = \mathbf{h}_{\mathbf{i}_l}(0) + \int_0^{t_e} \frac{t_l}{t_e} \boldsymbol{\alpha} \left(\mathbf{h}_{\mathbf{i}_l}(\frac{t_l}{t_e}s), \frac{t_l}{t_e}s \right) ds$$

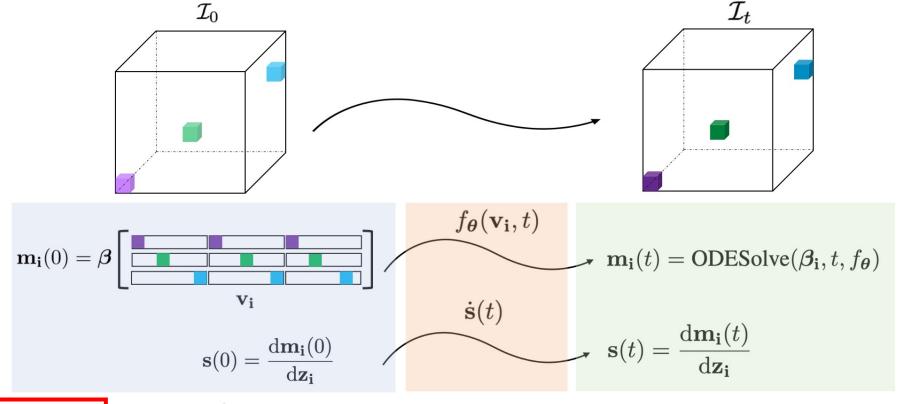
$$\mathbf{h_i}(t) = [m_i(t); \mathbf{s_i}(t)]$$

ODE of system sensitivity

Algorithm

• The bird view

- Depends on current state solution only
- Jointly solved with the system state with only one
 ODE solver and forward pass



$$\mathbf{h_i}(t) = [m_i(t); \mathbf{s_i}(t)]$$

Joint Initial Conditions

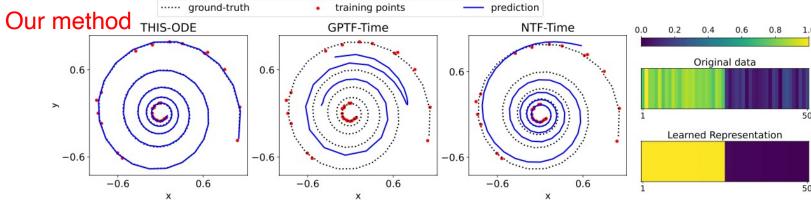
Joint Dynamics

Joint Solutions

Experiment

Ablation Study: Spiral Interactions

$$m_{\mathbf{i}}(t) = \left(u_{i_1}^1 \exp(-0.5t)\right)^{\mathbb{1}(i_1+i_2 \mod 2=0)} \cdot \left(u_{i_2}^2 + 2\pi t\right)^{\mathbb{1}(i_1+i_2 \mod 2=1)}$$



(a) Recovered Spiral in the *interpolation* experiment. Radius: $m_{(2,2)}(t)$; Angle: $m_{(1,2)}(t)$.

THIS-ODE	GPTF-Time	NTF-Time
0.6	-0.6	0.6
-0.6 0.6	-0.6 0.6	-0.6 0.6
X	X	X

(c) Recovered Spiral in the *extrapolation* experiment. Radius: $m_{(2,2)}(t)$; Angle: $m_{(1,2)}(t)$.

GPTF-Time	0.5557	0.9032
NTF-Time	0.1004	0.3656
THIS-ODE	0.0148	0.0746

Interpolation

Our method

(d) Structures	in	extrapol	ation.
----------------	----	----------	--------

(b) Structures in interpolation.

Original data

Learned Representation

Extrapolation

Experiment

• Real-world applications: Beijing Air, Indoor Condition, Server Room,

Fit Record

Name	Description	Size	NNZ	Granularity in Time	
Beijing Air Quality	time x locations x pollutants	35064 x 12 x 6	2454305	hourly	
Indoor Condition	time x locations x sensor	19735 x 9 x 2	241201	every 10 minutes	

Interpolation	Beijing Air	Indoor Condition		Extrapolation		
CP-Time	0.897 ± 0.012	0.780 ± 0.012		CP-Time	0.863 ± 0.022	0.867 ± 0.010
CP-DTL	0.898 ± 0.015	0.842 ± 0.003		CP-DTL	0.553 ± 0.005	0.527 ± 0.006
CP-DTN	0.833 ± 0.003	0.889 ± 0.005		CP-DTN	0.557 ± 0.004	0.584 ± 0.009
GPTF-Time	0.711 ± 0.011	0.849 ± 0.005		GPTF-Time	0.527 ± 0.018	0.489 ± 0.011
GPTF-DTL	0.686 ± 0.045	0.852 ± 0.004	• • •	GPTF-DTL	0.577 ± 0.035	0.506 ± 0.013
GPTF-DTN	0.670 ± 0.062	0.713 ± 0.104		GPTF-DTN	0.511 ± 0.002	0.489 ± 0.003
NTF-Time	0.745 ± 0.095	0.800 ± 0.009		NTF-Time	0.537 ± 0.002	0.510 ± 0.027
NTF-DTL	0.757 ± 0.006	0.777 ± 0.018		NTF-DTL	0.512 ± 0.009	0.593 ± 0.079
NTF-DTN	0.686 ± 0.011	0.665 ± 0.004		NTF-DTN	0.513 ± 0.003	0.484 ± 0.011
PTucker	0.959 ± 0.015	0.806 ± 0.027		PTucker	0.522 ± 0.022	0.749 ± 0.006
THIS-ODE	$\boldsymbol{0.624 \pm 0.008}$	$\boldsymbol{0.618 \pm 0.007}$		THIS-ODE	$\boldsymbol{0.498 \pm 0.013}$	$\boldsymbol{0.460 \pm 0.004}$

Our method

Welcome to our poster!

Shibo Li (shibo@cs.utah.edu)