Adversarial Robustness against Multiple and Single I_p -Threat Models via Quick Fine-Tuning of Robust Classifiers

Francesco Croce Matthias Hein

University of Tübingen

International Conference on Machine Learning 2022

Some context

• A classifier $f:[0,1]^d \to \mathbb{R}^K$ is robust wrt a **single** I_p -norm at radius ϵ at a point x with correct label c if

$$\underset{r=1,...,K}{\arg\max}\,f_r(x+\delta)=c,\quad\text{for every }\delta\quad\text{s. th. }\|\delta\|_p\leq\epsilon,\;x+\delta\in[0,1]^d$$

- ullet Adversarial training is commonly used to obtain robust models ullet more expensive than standard training
- Multiple norm robustness means simultaneous robustness to several threat models, in our case I_{∞} , I_2 and I_1
- SOTA methods for multiple norm robustness perform adversarial training for every $I_p \to \text{mostly more expensive}$ than adversarial training wrt single norms

Fine-tuning robust classifiers

Goal: obtaining models with multiple norm robustness efficiently

Idea: short fine-tuning of I_p -robust classifiers for multiple norm robustness

model	clean	$l_{\infty} \left(\epsilon_{\infty} = \frac{8}{255}\right)$	$l_2 \ (\epsilon_2 = 0.5)$	$l_1 \ (\epsilon_1 = 12)$	average	union	time/epoch
RN-18 l_{∞} -AT	83.7	48.1	59.8	7.7	38.5	7.7	151 s
+ SAT	83.5 ± 0.2	43.5 ± 0.2	68.0 ± 0.4	47.4 ± 0.5	53.0 ± 0.2	41.0 ± 0.3	161 s
+ AVG	84.2 ± 0.4	43.3 ± 0.4	68.4 ± 0.6	46.9 ± 0.6	52.9 ± 0.4	40.6 ± 0.4	479 s
+ MAX	82.2 ± 0.3	45.2 ± 0.4	67.0 ± 0.7	46.1 ± 0.4	52.8 ± 0.3	42.2 ± 0.6	466 s
+ MSD	82.2 ± 0.4	44.9 ± 0.3	67.1 ± 0.6	47.2 ± 0.6	53.0 ± 0.4	42.6 ± 0.2	306 s
+ E-AT	82.7 ± 0.4	44.3 ± 0.6	68.1 ± 0.5	48.7 ± 0.5	53.7 ± 0.3	42.2 ± 0.8	160 s

Fine-tuning I_p -robust models with any $p \in \{\infty, 2, 1\}$ for multiple norm robustness for **3 epochs (CIFAR-10) or 1 epoch (ImageNet)** is sufficient to reach competitive robustness in the union of threat models!

Extreme norm Adversarial Training

Problem: MAX (Tramèr & Boneh, 2019) and MSD (Maini et al., 2020) are 2-3x **more expensive** than single norm adversarial training.

Note: Croce & Hein (2020) show that, for linear classifiers, robustness wrt I_{∞} and I_1 (extreme norms) is sufficient for robustness wrt I_p for $p \in (1, \infty)$.

We propose Extreme norm Adversarial Training (E-AT), which

- performs adversarial training for a **single** norm, l_{∞} or l_1 , for each batch,
- adaptively samples the threat model to use,
- is as expensive as single norm adversarial training.

		model	clean		l_{∞} (ϵ_{\circ}	$_{\circ} = \frac{8}{255}$	l_2 (ϵ_2 :	= 0.5)	$l_1 (\epsilon_1 :$	= 12)	union	
		RN-50 - l_{∞} (Engstrom et al., 2019)	+ FT 88.7 86.2	-2.5	50.9 46.0	-4.9	59.4 70.1	10.7	5.0 49.2	44.2	5.0 43.4	38.4
	Fine-tuning	WRN-34-20 - l_{∞} (Gowal et al., 2020)	+ FT 87.2 + 88.3	1.1	56.6 49.3	-7.3	63.7	8.1	8.5 51.2	42.7	8.5 46.2	37.7
CIFAR-10	l_{∞} -robust models	WRN-28-10 - l_{∞} (*) (Carmon et al., 2019)	+ FT 90.3 90.3	0.0	59.1 52.6	-6.5	65.7 74.7	9.0	8.0 54.0	46.0	8.0 48.7	40.7
		WRN-28-10 - l_{∞} (*) (Gowal et al., 2020)	+ FT 89.9 91.2	1.3	62.9 53.9	-9.0	67.2 76.0	8.8	10.8 56.9	46.1	10.8 50.1	39.3
		WRN-70-16 - l_{∞} (*) (Gowal et al., 2020)	+ FT 90.7 + 1.6	0.9	65.6 54.3	-11.3	66.9 78.2	11.3	8.1 58.3	50.2	8.1 51.2	43.1

ImageNet

	model	clea	n	l_{∞} (ϵ_{\circ}	$_{\circ} = \frac{4}{255}$	l_2 (ϵ_2 :	= 2)	l_1 (ϵ_1 :	= 255)	union	
	RN-50 - l_{∞} (Engstrom et al., 2019)	+ FT 62.9		29.8 27.3	-2.5	17.7 41.1	23.4	0.0 24.0	24.0	0.0 21.7	21.7
Fine-tuning l_{∞} -robust models	RN-50 - l_{∞} (Bai et al., 2021)	+ FT 68.2		36.7 29.2	-7.5	15.6 42.1	26.5	0.0 24.5	24.5	0.0 22.6	22.6
	DeiT-S - l_{∞} (Bai et al., 2021)	+ FT 66.4		35.6 32.2	-3.4	40.1 46.1	6.0	3.1 24.8	21.7	3.1 23.6	20.5
	XCiT-S - l_{∞} (Debenedetti, 2022)	+ FT 72.8		41.7 36.4	-5.3	45.3 51.3	6.0	2.7 28.4	25.7	2.7 26.7	24.0

Quick fine-tuning with E-AT is effective on different architectures, datasets, with or without extra data.

	model	clean		l_{∞} (ϵ_{∞}	$_{\circ} = \frac{8}{255}$	l_2 (ϵ_2 :	= 0.5)	l_1 (ϵ_1 :	= 12)	union	
	RN-50 - l_{∞} (Engstrom et al., 2019)	+ FT 88.7 86.2	-2.5	50.9 46.0	-4.9	59.4 70.1	10.7	5.0 49.2	44.2	5.0 43.4	38.4
Fine-tuning	WRN-34-20 - l_{∞} (Gowal et al., 2020)	+ FT 87.2 88.3	1.1	56.6 49.3	-7.3	63.7 71.8	8.1	8.5 51.2	42.7	8.5 46.2	37.7
l_∞ -robust models	WRN-28-10 - l_{∞} (*) (Carmon et al., 2019)	+ FT 90.3 90.3	0.0	59.1 52.6	-6.5	65.7 74.7	9.0	8.0 54.0	46.0	8.0 48.7	40.7
	WRN-28-10 - l_{∞} (*) (Gowal et al., 2020)	+ FT 89.9 + 1.2	1.3	62.9 53.9	-9.0	67.2 76.0	8.8	10.8 56.9	46.1	10.8 50.1	39.3
	WRN-70-16 - l_{∞} (*) (Gowal et al., 2020)	90.7 + FT 91.6	0.9	65.6 54.3	-11.3	66.9 78.2	11.3	8.1 58.3	50.2	8.1 51.2	43.1

ImageNet

CIFAR-10

	model	clean		l_{∞} (ϵ_{\circ}	$_{\circ} = \frac{4}{255}$	l_2 (ϵ_2 :	= 2)	l_1 (ϵ_1 :	= 255)	union	
	RN-50 - l_{∞} (Engstrom et al., 2019)	+ FT 62.9 58.0	-4.9	29.8 27.3	-2.5	17.7 41.1	23.4	0.0 24.0	24.0	0.0 21.7	21.7
Fine-tuning l_{∞} -robust models	RN-50 - l_{∞} (Bai et al., 2021)	+ FT 68.2 60.1	-8.1	36.7 29.2	-7.5	15.6 42.1	26.5	0.0 24.5	24.5	0.0 22.6	22.6
100 1000001	DeiT-S - l_{∞} (Bai et al., 2021)	+ FT 66.4 + ET 62.6		35.6 32.2	-3.4	40.1 46.1	6.0	3.1 24.8	21.7	3.1 23.6	20.5
	XCiT-S - l_{∞} (Debenedetti, 2022)	+ FT 72.8 + FT 68.0	-4.8	41.7 36.4	-5.3	45.3 51.3	6.0	2.7 28.4	25.7	2.7 26.7	24.0

Quick fine-tuning with E-AT allows to obtain SOTA multiple norm robustness with large architectures or datasets with low computational cost!

Why multiple norm robustness?

We test the robustness of various classifiers on CIFAR-10 to **unseen non** I_p -bounded attacks (sparse attacks, adversarial corruptions).

model	clean	comm.	l_{0}	patches	frames	fog	snow	gabor	elastic	jpeg	avg.	union
		corr.										
NAT	94.4	71.6	0.1	8.1	2.6	47.3	3.9	35.0	0.2	0.0	12.2	0.0
l_{∞} -AT	81.9	72.6	7.3	21.6	26.2	36.0	35.9	52.5	59.4	5.1	30.5	2.0
l_2 -AT	87.8	79.2	13.2	25.0	17.7	44.9	22.1	43.5	56.6	14.0	29.6	4.5
l_1 -AT	83.5	75.0	40.9	41.3	21.1	35.6	20.6	41.2	53.3	25.5	34.9	8.6
PAT	82.6	76.9	23.3	37.9	21.7	53.5	25.6	41.8	53.5	13.7	33.9	8.0
SAT	80.5	72.0	38.7	36.7	29.3	33.5	29.0	49.8	57.0	37.4	38.9	13.8
AVG	82.0	73.6	39.7	36.8	30.8	37.2	21.1	49.9	58.1	30.4	38.0	10.9
MAX	80.1	71.3	35.1	34.6	32.7	34.5	35.0	53.4	58.5	33.5	39.7	15.3
MSD	81.0	71.7	36.9	35.0	31.8	34.6	26.4	51.5	59.7	33.4	38.7	12.9
E-AT	79.1	71.3	39.5	37.7	30.5	34.8	33.4	50.2	58.6	38.7	40.4	15.9

Models trained wrt multiple norms show the highest robustness to unseen attacks.

Fine-tuning to another I_q -threat model

We try to fine-tune a classifier robust wrt l_p with adversarial training wrt l_q for $q \neq p$ (3 epochs for CIFAR-10, 1 epoch for ImageNet).

	CIFA!	R-10 $ l_{\infty}$	l_2	l_1	$egin{aligned} extbf{ImageNet} \ ext{ } clean & ext{ } l_2 & ext{ } l_1 \end{aligned}$						
WRN-70-16 (Gowal	et al., 2020)) - l _∞ (*)			DeiT-S (Bai et al., 2021) - l_{∞}						
$\begin{array}{c} \text{original} \\ + \text{FT wrt } l_2 \\ + \text{FT wrt } l_1 \end{array}$	90.7 92.8 92.4	65.6 47.4 33.9	66.9 80.0 74.7	8.1 34.0 70.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
WRN-70-16 (Gowal	et al., 2020)) - l ₂ (*)			XCiT-S (Debenedetti, 2022) - l_{∞}						
$\begin{array}{c} \text{original} \\ + \text{FT wrt } l_{\infty} \\ + \text{FT wrt } l_{1} \end{array}$	94.1 92.3 92.8	43.1 58.5 29.2	81.7 73.5 75.7	34.6 11.4 68.9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
RN-18 (Croce & Hei	n, 2021) -	l_1			RN-50 (Engstrom et al., 2019) - l_2						
$\begin{array}{c} \text{original} \\ + \text{FT wrt } l_{\infty} \\ + \text{FT wrt } l_2 \end{array}$	87.1 82.7 88.0	22.0 44.2 31.0	64.8 66.6 69.8	60.3 25.4 39.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Fine-tuning robust classifiers allows to quickly obtain competitive baselines in other threat models!