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Some context

A classifier f : [0, 1]d → RK is robust wrt a single lp-norm at radius ε at a
point x with correct label c if

arg max
r=1,...,K

fr(x + δ) = c , for every δ s. th. ‖δ‖p ≤ ε, x + δ ∈ [0, 1]d

Adversarial training is commonly used to obtain robust models → more
expensive than standard training

Multiple norm robustness means simultaneous robustness to several threat
models, in our case l∞, l2 and l1

SOTA methods for multiple norm robustness perform adversarial training for
every lp → mostly more expensive than adversarial training wrt single norms
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Fine-tuning robust classifiers

Goal: obtaining models with multiple norm robustness efficiently

Idea: short fine-tuning of lp-robust classifiers for multiple norm robustness

Adversarial Robustness against Multiple and Single lp-Threat Models via Quick Fine-Tuning of Robust Classifiers

Table 1. CIFAR-10 - Other methods vs E-AT for fine-tuning: We fine-tune with different methods for multiple norms for 3 epochs
the RN-18 robust wrt l∞ (mean and standard deviation of the clean and robust accuracy over 5 seeds is reported). We report clean
performance, robust accuracy in each lp-threat model, their average and the robust accuracy in their union (all values in percentage).

model clean l∞ (ε∞ = 8
255

) l2 (ε2 = 0.5) l1 (ε1 = 12) average union time/epoch

RN-18 l∞-AT 83.7 48.1 59.8 7.7 38.5 7.7 151 s
+ SAT 83.5 ± 0.2 43.5 ± 0.2 68.0 ± 0.4 47.4 ± 0.5 53.0 ± 0.2 41.0 ± 0.3 161 s
+ AVG 84.2 ± 0.4 43.3 ± 0.4 68.4 ± 0.6 46.9 ± 0.6 52.9 ± 0.4 40.6 ± 0.4 479 s

+ MAX 82.2 ± 0.3 45.2 ± 0.4 67.0 ± 0.7 46.1 ± 0.4 52.8 ± 0.3 42.2 ± 0.6 466 s
+ MSD 82.2 ± 0.4 44.9 ± 0.3 67.1 ± 0.6 47.2 ± 0.6 53.0 ± 0.4 42.6 ± 0.2 306 s
+ E-AT 82.7 ± 0.4 44.3 ± 0.6 68.1 ± 0.5 48.7 ± 0.5 53.7 ± 0.3 42.2 ± 0.8 160 s

Figure 2. Visualization of the l2-ball contained in the union resp. the convex hull of the union of l1- and l∞-balls in R2. First: co-
centric l1-ball (blue) and l∞-ball (black). Second: in red the largest l2-ball contained in the union of l1- and l∞-ball. Third: in green
the convex hull of the union of the l1- and l∞-ball. Fourth: the largest l2-ball (red) contained in the convex hull. The l2-ball contained
in the convex hull is significantly larger than that in the union of l1- and l∞-ball.

trivial robustness to l2-attacks, although lower than what
one gets directly training against such attacks, and vice
versa. This is confirmed by our evaluation in App. C.7,
where we also notice that l1-AT provides good robust ac-
curacy in l2. On the other hand, training for l∞ resp. l1
does not yield particular robustness to the dual norm, which
is reasonable since the perturbations generated in the two
threat models are very different, while the l2-threat model
is an intermedicate case which yields partial robustness
against l∞ and l1. Therefore, we propose to use models
trained for robustness wrt a single norm as good initial-
izations to achieve, within a small computational budget,
multiple norms robustness. We test this by fine-tuning for
3 epochs an l∞-robust model on CIFAR-10 with the exist-
ing methods for multiple norms robustness and our E-AT.
Table 1 shows that a short fine-tuning (details in Sec. 3.4)
of a PreAct ResNet-18 (He et al., 2016) trained with adver-
sarial training wrt l∞ is effective in achieving competitive
robustness in the union, not far from those of full train-
ing from random initialization (see Table 5). However, the
most effective methods, MAX and MSD, are 2-3x slower
than standard adversarial training, while SAT is as fast as
l∞-AT but performs slightly worse. E-AT aims at achieving
the same results as MAX and MSD in the union while hav-
ing complexity on par with SAT. Moreover, we report the
average robustness in the 3 threat models, as done in prior
works, where E-AT achieves the best results. In App. C.1
we show that similar observations can be made when fine-

tuning models initially l2- or l1-robust, and (Sec. 3.4) are
not specific to CIFAR-10 but generalize to ImageNet.

All previous methods assume that for achieving robustness
to multiple norms each threat models has to be used at train-
ing time. In the following we first present an argument, us-
ing recent results from Croce & Hein (2020b), suggesting
that this need not be the case. Based on this analysis, we
introduce our extreme norms adversarial training (E-AT)
which achieves multiple norm robustness at the same price
as training for a single lp. Finally, we fine-tune with E-AT
large robust models on CIFAR-10 and ImageNet.

3.2. Geometry of the union of lp-balls and their convex
hull

The main insight we use for E-AT is that a linear classifier
which is robust in both an l1- and an l∞-ball is also robust
wrt the largest lp-ball for 1 ≤ p ≤ ∞ which fits into the
convex hull of the union of the l1- and l∞-ball. This ball
is significantly larger than the largest lp-ball contained into
the union of the l1- and l∞-ball (see Fig. 2). Thus it is suffi-
cient to be robust wrt the two “extreme” norms l1 and l∞ to
ensure robustness. While this is exact for affine classifiers,
we conjecture that for neural networks this will at least hold
approximately true (note that typical ReLU-networks yield
piecewise affine classifiers (Arora et al., 2018)) and for the
model it is the most efficient way in terms of capacity to be
l1- and l∞-robust.

Fine-tuning lp-robust models with any p ∈ {∞, 2, 1} for multiple norm
robustness for 3 epochs (CIFAR-10) or 1 epoch (ImageNet) is sufficient to

reach competitive robustness in the union of threat models!
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Extreme norm Adversarial Training
Problem: MAX (Tramèr & Boneh, 2019) and MSD (Maini et al., 2020) are 2-3x
more expensive than single norm adversarial training.

Note: Croce & Hein (2020) show that, for
linear classifiers, robustness wrt l∞ and l1
(extreme norms) is sufficient for robustness
wrt lp for p ∈ (1,∞).

We propose Extreme norm Adversarial Training (E-AT), which
performs adversarial training for a single norm, l∞ or l1, for each batch,
adaptively samples the threat model to use,
is as expensive as single norm adversarial training.
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CIFAR-10

Adversarial Robustness against Multiple and Single lp-Threat Models via Quick Fine-Tuning of Robust Classifiers

Table 2. CIFAR-10 - 3 epochs of E-AT fine-tuning on lp-robust models: We fine-tune with E-AT models robust wrt a single lp-norm,
and report the robust accuracy on 1000 test points for all threat models and the difference to the initial classifier. (*) uses extra data.

model clean l∞ (ε∞ = 8
255

) l2 (ε2 = 0.5) l1 (ε1 = 12) union

Fine-tuning
l∞-robust models

RN-50 - l∞ 88.7 50.9 59.4 5.0 5.0
(Engstrom et al., 2019) + FT 86.2 -2.5 46.0 -4.9 70.1 10.7 49.2 44.2 43.4 38.4

WRN-34-20 - l∞ 87.2 56.6 63.7 8.5 8.5
(Gowal et al., 2020) + FT 88.3 1.1 49.3 -7.3 71.8 8.1 51.2 42.7 46.2 37.7

WRN-28-10 - l∞ (*) 90.3 59.1 65.7 8.0 8.0
(Carmon et al., 2019) + FT 90.3 0.0 52.6 -6.5 74.7 9.0 54.0 46.0 48.7 40.7

WRN-28-10 - l∞ (*) 89.9 62.9 67.2 10.8 10.8
(Gowal et al., 2020) + FT 91.2 1.3 53.9 -9.0 76.0 8.8 56.9 46.1 50.1 39.3

WRN-70-16 - l∞ (*) 90.7 65.6 66.9 8.1 8.1
(Gowal et al., 2020) + FT 91.6 0.9 54.3 -11.3 78.2 11.3 58.3 50.2 51.2 43.1

Fine-tuning
l2-robust models

RN-50 - l2 91.5 29.7 70.3 27.0 23.0
(Engstrom et al., 2019) + FT 87.8 -3.7 43.1 13.4 70.8 0.5 50.2 23.2 41.7 18.7

RN-50 - l2 (*) 91.1 37.7 73.4 31.2 28.8
(Augustin et al., 2020) + FT 87.0 -4.1 47.2 9.5 70.4 -3.0 54.1 22.9 46.0 17.2

WRN-70-16 - l2 (*) 94.1 43.1 81.7 34.6 32.4
(Gowal et al., 2020) + FT 91.2 -2.9 51.9 8.8 79.2 -2.5 58.8 24.2 49.7 17.3

Fine-tuning
l1-robust models

RN-18 - l1 87.1 22.0 64.8 60.3 22.0
(Croce & Hein, 2021) + FT 83.5 -3.6 40.3 18.3 68.1 3.3 55.7 -4.6 40.1 18.1

with E-AT1 for 3 epochs on CIFAR-10 and 1 epoch on
ImageNet-1k, starting with learning rate 0.05 or 0.01, de-
pending on the model, and decreasing by a factor of 10
every 1/3 of the total number of finetuning epochs. We
do 10 steps of APGD in adversarial training for CIFAR-10,
while 5 and 15 with l∞ and l1 respectively on ImageNet
as optimizing in the l1-ball requires more iterations in that
case. When the model was originally trained with extra
data beyond the training set on CIFAR-10, we use the 500k
images introduced by Carmon et al. (2019) as additional
data for fine-tuning (see also Sec. A).

CIFAR-10: RobustBench (Croce et al., 2021) provides a
collection of the currently most robust classifiers. We took
a subset of the most robust models, among those which
do not use synthetic data, for l2- and l∞-norm and the
l1-robust one from Croce & Hein (2021) (all are trained
with the same radii εp as in our experiment). Note that
we use the classifiers from Gowal et al. (2020) (instead of
those from Rebuffi et al. (2021)) since those were the best
available ones at the time of the start of this project. We
present in Table 2 the results. First of all the fine-tuning
works for all tested architectures and results in many cases
in stronger robustness in the union than for the specifically
trained WideResNet-28-10 models (see Table 14). In par-
ticular, the most robust l∞-model from Gowal et al. (2020)
with 65.6% l∞-robustness and only 8.1% l1-robustness

1Code available at https://github.com/fra31/
robust-finetuning.

can be fine-tuned to a multiple-norm robust model with
51.2% robustness which is up to our knowledge the best
reported multiple-norm robustness. While in general it is
expected that larger architectures and extra data improve
robustness (see e.g. RobustBench leaderboards), we could
achieve such improvement without the high computational
cost (and potential instabilities) of training large networks
on an extended dataset from scratch. Very interesting is that
the l2-robustness of 78.2% is quite close to the 81.7% l2-
robustness of the specifically l2-trained model from Gowal
et al. (2020). Moreover, the l1-robustness of 58.3% is close
to the best reported one of 60.3% (Croce & Hein, 2021)
(however we improve this a lot in the next section) and the
model has even higher clean accuracy. Clearly, this comes
at the price of a significant loss in l∞ but this is to be ex-
pected. Striking is that fine-tuning the l2-robust model from
Gowal et al. (2020) results in a very similar result. Finally,
we observe that the l∞-threat model is the most challeng-
ing one, and fine-tuning l∞-robust models yields the best
robust accuracy in the union (when comparing models with
the same architecture). In a nutshell, E-AT fine-tuning of
existing lp-robust models yields very efficient and compet-
itive baselines for future research in this area.

ImageNet: We start with the l2- resp. l∞-robust mod-
els from Engstrom et al. (2019), Bai et al. (2021) and
Debenedetti (2022) including the vision transformers DeiT
small (Touvron et al., 2021) and XCiT small (El-Nouby
et al., 2021) We use ε2 = 2 for the experiments as the
robust accuracy is still in a reasonable range of 40% and

ImageNet

Adversarial Robustness against Multiple and Single lp-Threat Models via Quick Fine-Tuning of Robust Classifiers

Table 3. ImageNet - Results of one epoch of E-AT fine-tuning of existing robust models: We use existing models trained to be robust
wrt a single lp-ball (either l∞ or l2) and fine-tune them for a single epoch for multiple-norm robustness with our E-AT scheme.

model clean l∞ (ε∞ = 4
255

) l2 (ε2 = 2) l1 (ε1 = 255) union

Fine-tuning
l∞-robust models

RN-50 - l∞ 62.9 29.8 17.7 0.0 0.0
(Engstrom et al., 2019) + FT 58.0 -4.9 27.3 -2.5 41.1 23.4 24.0 24.0 21.7 21.7

RN-50 - l∞ 68.2 36.7 15.6 0.0 0.0
(Bai et al., 2021) + FT 60.1 -8.1 29.2 -7.5 42.1 26.5 24.5 24.5 22.6 22.6

DeiT-S - l∞ 66.4 35.6 40.1 3.1 3.1
(Bai et al., 2021) + FT 62.6 -3.8 32.2 -3.4 46.1 6.0 24.8 21.7 23.6 20.5

XCiT-S - l∞ 72.8 41.7 45.3 2.7 2.7
(Debenedetti, 2022) + FT 68.0 -4.8 36.4 -5.3 51.3 6.0 28.4 25.7 26.7 24.0

Fine-tuning
l2-robust models

RN-50 - l2 58.7 25.0 40.5 14.0 13.5
(Engstrom et al., 2019) + FT 56.7 -2.0 26.7 1.7 41.0 0.5 25.4 11.4 23.1 9.6

Table 4. ImageNet - 1 epoch of fine-tuning of existing robust
models: We use existing models trained to be robust wrt a single
lp-ball (either l∞ or l2) and fine-tune them for a single epoch for
multiple-norm robustness with SAT and E-AT.

model clean l∞ l2 l1 union

RN-50 - l∞-AT 62.9 29.8 17.7 0.0 0.0
+ SAT 59.4 26.5 38.8 21.1 19.4

+ E-AT 58.0 27.3 41.1 24.0 21.7

RN-50 - l2-AT 58.7 25.0 40.5 14.0 13.5
+ SAT 57.7 25.9 41.6 23.2 21.1

+ E-AT 56.7 26.7 41.0 25.4 23.1

together with our choice of ε1 = 255 and the standard
ε∞ = 4

255 the l2-radius from Theorem 3.1 is almost ex-
actly 2. The initial l∞-models are completely non-robust
for l1 but achieve, after fine-tuning, over 24% l1-robust
accuracy and also the l2-robust accuracy improves, at the
price of a relatively small loss in l∞-robust and clean ac-
curacy. Interestingly, the DeiT-S and XCiT-S models has
already high robustness wrt l2, unlike the RN-50s, which
further improves thanks to E-AT, and the latter attains the
best robustness in the union. For the l2-robust model all ro-
bust accuracies improve as the original model was trained
for ε = 3. Up to our knowledge no multiple-norm robust-
ness has been reported before for ImageNet and thus these
results are an important baseline. Finally, we show in Ta-
ble 4 that both SAT and E-AT are effective for fine-tuning
on ImageNet, and E-AT achieves the best robustness in the
union (we omit the other methods since they are computa-
tionally more expensive). We also observe that in this case
l1 is the most challenging threat model, and the best robust-
ness in the union is achieved when fine-tuning the classifier
(among those using RN-50 as architecture) trained wrt l2
which already has non-trivial robustness wrt l1.

Additional experiments: Appendix C contains further
studies and details about fine-tuning with E-AT, e.g. we

report runtime and show that fine-tuning a naturally trained
model does not provide competitive robustness and leads to
low clean accuracy. Moreover, we show the stability of the
scheme over random seeds, that increasing the number of
epochs progressively improves the robustness in the union,
and that even models trained to be robust wrt perceptual
metrics can be used for E-AT fine-tuning.

3.5. Full training for multiple norm robustness from
random initialization

We evaluate the performance of the different methods for
multiple-norm robustness when applied for full training
from random initialization on CIFAR-10 (using the same
εp as above). Table 5 reports the results, averaged over
3 runs, in every threat model: MAX and MSD attain the
best robustness in the union, and E-AT is close to them
and outperforms SAT. We recall that E-AT is 2-3x less ex-
pensive than MSD and MAX (see Table 1). We also in-
clude the performance of models trained to be robust for
single norms, which do not show high robustness in the
union of the threat models. More details and further ex-
periments with WideResNet-28-10 as architecture can be
found in App. A and App. C.7.

3.6. Robustness against unseen non lp-bounded
adversarial attacks

We investigate on CIFAR-10 to which extent adversarial
robustness achieved with multiple norms training general-
izes to unseen and possibly very different threat models.
We select three sparse attacks (l0-bounded, patches and
frames) and five adversarial corruptions (fog, snow, Gabor
noise, elastic, l∞-JPEG) from Kang et al. (2019b). Ad-
ditionally, we compute the accuracy of the classifiers on
the common corruptions, i.e. not adversarially optimized,
of CIFAR-10-C (Hendrycks & Dietterich, 2019). Table 6
shows the results against such attacks of WRN-28-10 ad-

Quick fine-tuning with E-AT is effective on different architectures, datasets,
with or without extra data.
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CIFAR-10

ImageNet

Quick fine-tuning with E-AT allows to obtain SOTA multiple norm robustness
with large architectures or datasets with low computational cost!
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Why multiple norm robustness?

We test the robustness of various classifiers on CIFAR-10 to unseen non
lp-bounded attacks (sparse attacks, adversarial corruptions).

Adversarial Robustness against Multiple and Single lp-Threat Models via Quick Fine-Tuning of Robust Classifiers

Table 6. CIFAR-10 - Robustness against non lp-bounded attacks: We test the robustness of WRN-28-10 trained in different threat
models against unseen types of attacks. Moreover, we add the PAT model from Laidlaw et al. (2021), which uses RN-50 as architecture.

model clean comm.
corr.

l0 patches frames fog snow gabor elastic jpeg avg. union

NAT 94.4 71.6 0.1 8.1 2.6 47.3 3.9 35.0 0.2 0.0 12.2 0.0
l∞-AT 81.9 72.6 7.3 21.6 26.2 36.0 35.9 52.5 59.4 5.1 30.5 2.0
l2-AT 87.8 79.2 13.2 25.0 17.7 44.9 22.1 43.5 56.6 14.0 29.6 4.5
l1-AT 83.5 75.0 40.9 41.3 21.1 35.6 20.6 41.2 53.3 25.5 34.9 8.6
PAT 82.6 76.9 23.3 37.9 21.7 53.5 25.6 41.8 53.5 13.7 33.9 8.0

SAT 80.5 72.0 38.7 36.7 29.3 33.5 29.0 49.8 57.0 37.4 38.9 13.8
AVG 82.0 73.6 39.7 36.8 30.8 37.2 21.1 49.9 58.1 30.4 38.0 10.9
MAX 80.1 71.3 35.1 34.6 32.7 34.5 35.0 53.4 58.5 33.5 39.7 15.3
MSD 81.0 71.7 36.9 35.0 31.8 34.6 26.4 51.5 59.7 33.4 38.7 12.9
E-AT 79.1 71.3 39.5 37.7 30.5 34.8 33.4 50.2 58.6 38.7 40.4 15.9

Table 7. Fine-tuning lp-robust models to another threat model: For each norm we fine-tune the most robust models wrt the other
ones for 3 epochs for CIFAR-10 and 1 epoch for ImageNet and report clean and robust accuracy for all threat models. Even for the threat
models where the robustness of the original model is low, the fine-tuning is sufficient to yield robustness almost at the same level of the
specialized models with same architecture. For each threat model (column) we highlight in blue the model trained for the specific norm,
in orange those only fine-tuned in the target norm. The values of the thresholds ε are the same used the multiple norms experiments.

CIFAR-10
clean l∞ l2 l1

WRN-70-16 (Gowal et al., 2020) - l∞ (*)

original 90.7 65.6 66.9 8.1
+ FT wrt l2 92.8 47.4 80.0 34.0
+ FT wrt l1 92.4 33.9 74.7 70.2

WRN-70-16 (Gowal et al., 2020) - l2 (*)

original 94.1 43.1 81.7 34.6
+ FT wrt l∞ 92.3 58.5 73.5 11.4
+ FT wrt l1 92.8 29.2 75.7 68.9

RN-18 (Croce & Hein, 2021) - l1
original 87.1 22.0 64.8 60.3

+ FT wrt l∞ 82.7 44.2 66.6 25.4
+ FT wrt l2 88.0 31.0 69.8 39.7

ImageNet
clean l∞ l2 l1

DeiT-S (Bai et al., 2021) - l∞
original 66.4 35.6 40.1 3.1

+ FT wrt l2 66.5 31.2 46.1 9.6
+ FT wrt l1 61.0 23.9 42.9 30.1

XCiT-S (Debenedetti, 2022) - l∞
original 72.8 41.7 45.3 2.7

+ FT wrt l2 71.5 35.9 51.4 9.5
+ FT wrt l1 65.8 25.2 47.1 33.9

RN-50 (Engstrom et al., 2019) - l2
original 58.7 25.0 40.5 14.0

+ FT wrt l∞ 59.1 31.5 40.1 7.5
+ FT wrt l1 56.8 18.0 37.1 28.7

i.e. 28.7%. Note that compared to fine-tuning for multiple-
norm robustness (see Table 3), fine-tuning XCiT-S specifi-
cally for l2 yields almost the same robust accuracy but 3.5%
better clean performance, while, when fine-tuning it for l1,
the l1-robust accuracy is 5.5% higher. Up to our knowl-
edge our ImageNet models are the first ones for which l1-
robustness is reported.

5. Conclusion
Based on the geometry of the lp-balls we have introduced
E-AT, a novel training scheme for multiple-norm robust-
ness which achieves comparable adversarial robustness in
the union while being significantly faster. We also show for
the first time that fine-tuning can be used to transfer adver-
sarial robustness from a single lp-threat model to the mul-
tiple norms one, and that one can even obtain an lq-robust
classifier with a quick fine-tuning of an lp-robust one with

p 6= q. This yields strong baselines for future research. We
have in this way generated models with SOTA performance
for multiple-norm and l1-robustness on CIFAR-10 and the
first models on ImageNet with significant multiple-norm
as well as l1-robustness. This shows that fine-tuning is an
excellent technique to avoid the increasingly high costs of
training large adversarially robust models from scratch.
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Models trained wrt multiple norms show the highest robustness to unseen attacks.
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Fine-tuning to another lq-threat model
We try to fine-tune a classifier robust wrt lp with adversarial training wrt lq for
q 6= p (3 epochs for CIFAR-10, 1 epoch for ImageNet).

Adversarial Robustness against Multiple and Single lp-Threat Models via Quick Fine-Tuning of Robust Classifiers

Table 6. CIFAR-10 - Robustness against non lp-bounded attacks: We test the robustness of WRN-28-10 trained in different threat
models against unseen types of attacks. Moreover, we add the PAT model from Laidlaw et al. (2021), which uses RN-50 as architecture.

model clean comm.
corr.

l0 patches frames fog snow gabor elastic jpeg avg. union

NAT 94.4 71.6 0.1 8.1 2.6 47.3 3.9 35.0 0.2 0.0 12.2 0.0
l∞-AT 81.9 72.6 7.3 21.6 26.2 36.0 35.9 52.5 59.4 5.1 30.5 2.0
l2-AT 87.8 79.2 13.2 25.0 17.7 44.9 22.1 43.5 56.6 14.0 29.6 4.5
l1-AT 83.5 75.0 40.9 41.3 21.1 35.6 20.6 41.2 53.3 25.5 34.9 8.6
PAT 82.6 76.9 23.3 37.9 21.7 53.5 25.6 41.8 53.5 13.7 33.9 8.0

SAT 80.5 72.0 38.7 36.7 29.3 33.5 29.0 49.8 57.0 37.4 38.9 13.8
AVG 82.0 73.6 39.7 36.8 30.8 37.2 21.1 49.9 58.1 30.4 38.0 10.9
MAX 80.1 71.3 35.1 34.6 32.7 34.5 35.0 53.4 58.5 33.5 39.7 15.3
MSD 81.0 71.7 36.9 35.0 31.8 34.6 26.4 51.5 59.7 33.4 38.7 12.9
E-AT 79.1 71.3 39.5 37.7 30.5 34.8 33.4 50.2 58.6 38.7 40.4 15.9

Table 7. Fine-tuning lp-robust models to another threat model: For each norm we fine-tune the most robust models wrt the other
ones for 3 epochs for CIFAR-10 and 1 epoch for ImageNet and report clean and robust accuracy for all threat models. Even for the threat
models where the robustness of the original model is low, the fine-tuning is sufficient to yield robustness almost at the same level of the
specialized models with same architecture. For each threat model (column) we highlight in blue the model trained for the specific norm,
in orange those only fine-tuned in the target norm. The values of the thresholds ε are the same used the multiple norms experiments.

CIFAR-10
clean l∞ l2 l1

WRN-70-16 (Gowal et al., 2020) - l∞ (*)

original 90.7 65.6 66.9 8.1
+ FT wrt l2 92.8 47.4 80.0 34.0
+ FT wrt l1 92.4 33.9 74.7 70.2

WRN-70-16 (Gowal et al., 2020) - l2 (*)

original 94.1 43.1 81.7 34.6
+ FT wrt l∞ 92.3 58.5 73.5 11.4
+ FT wrt l1 92.8 29.2 75.7 68.9

RN-18 (Croce & Hein, 2021) - l1
original 87.1 22.0 64.8 60.3

+ FT wrt l∞ 82.7 44.2 66.6 25.4
+ FT wrt l2 88.0 31.0 69.8 39.7

ImageNet
clean l∞ l2 l1

DeiT-S (Bai et al., 2021) - l∞
original 66.4 35.6 40.1 3.1

+ FT wrt l2 66.5 31.2 46.1 9.6
+ FT wrt l1 61.0 23.9 42.9 30.1

XCiT-S (Debenedetti, 2022) - l∞
original 72.8 41.7 45.3 2.7

+ FT wrt l2 71.5 35.9 51.4 9.5
+ FT wrt l1 65.8 25.2 47.1 33.9

RN-50 (Engstrom et al., 2019) - l2
original 58.7 25.0 40.5 14.0

+ FT wrt l∞ 59.1 31.5 40.1 7.5
+ FT wrt l1 56.8 18.0 37.1 28.7

i.e. 28.7%. Note that compared to fine-tuning for multiple-
norm robustness (see Table 3), fine-tuning XCiT-S specifi-
cally for l2 yields almost the same robust accuracy but 3.5%
better clean performance, while, when fine-tuning it for l1,
the l1-robust accuracy is 5.5% higher. Up to our knowl-
edge our ImageNet models are the first ones for which l1-
robustness is reported.

5. Conclusion
Based on the geometry of the lp-balls we have introduced
E-AT, a novel training scheme for multiple-norm robust-
ness which achieves comparable adversarial robustness in
the union while being significantly faster. We also show for
the first time that fine-tuning can be used to transfer adver-
sarial robustness from a single lp-threat model to the mul-
tiple norms one, and that one can even obtain an lq-robust
classifier with a quick fine-tuning of an lp-robust one with

p 6= q. This yields strong baselines for future research. We
have in this way generated models with SOTA performance
for multiple-norm and l1-robustness on CIFAR-10 and the
first models on ImageNet with significant multiple-norm
as well as l1-robustness. This shows that fine-tuning is an
excellent technique to avoid the increasingly high costs of
training large adversarially robust models from scratch.
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Fine-tuning robust classifiers allows to quickly obtain competitive baselines in
other threat models!
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