Adversarial Robustness against Multiple and Single I_p -Threat Models via Quick Fine-Tuning of Robust Classifiers Francesco Croce Matthias Hein University of Tübingen International Conference on Machine Learning 2022 #### Some context • A classifier $f:[0,1]^d \to \mathbb{R}^K$ is robust wrt a **single** I_p -norm at radius ϵ at a point x with correct label c if $$\underset{r=1,...,K}{\arg\max}\,f_r(x+\delta)=c,\quad\text{for every }\delta\quad\text{s. th. }\|\delta\|_p\leq\epsilon,\;x+\delta\in[0,1]^d$$ - ullet Adversarial training is commonly used to obtain robust models ullet more expensive than standard training - Multiple norm robustness means simultaneous robustness to several threat models, in our case I_{∞} , I_2 and I_1 - SOTA methods for multiple norm robustness perform adversarial training for every $I_p \to \text{mostly more expensive}$ than adversarial training wrt single norms #### Fine-tuning robust classifiers Goal: obtaining models with multiple norm robustness efficiently **Idea:** short fine-tuning of I_p -robust classifiers for multiple norm robustness | model | clean | $l_{\infty} \left(\epsilon_{\infty} = \frac{8}{255}\right)$ | $l_2 \ (\epsilon_2 = 0.5)$ | $l_1 \ (\epsilon_1 = 12)$ | average | union | time/epoch | |------------------------|----------------|---|----------------------------|---------------------------|----------------|----------------|------------| | RN-18 l_{∞} -AT | 83.7 | 48.1 | 59.8 | 7.7 | 38.5 | 7.7 | 151 s | | + SAT | 83.5 ± 0.2 | 43.5 ± 0.2 | 68.0 ± 0.4 | 47.4 ± 0.5 | 53.0 ± 0.2 | 41.0 ± 0.3 | 161 s | | + AVG | 84.2 ± 0.4 | 43.3 ± 0.4 | 68.4 ± 0.6 | 46.9 ± 0.6 | 52.9 ± 0.4 | 40.6 ± 0.4 | 479 s | | + MAX | 82.2 ± 0.3 | 45.2 ± 0.4 | 67.0 ± 0.7 | 46.1 ± 0.4 | 52.8 ± 0.3 | 42.2 ± 0.6 | 466 s | | + MSD | 82.2 ± 0.4 | 44.9 ± 0.3 | 67.1 ± 0.6 | 47.2 ± 0.6 | 53.0 ± 0.4 | 42.6 ± 0.2 | 306 s | | + E-AT | 82.7 ± 0.4 | 44.3 ± 0.6 | 68.1 ± 0.5 | 48.7 ± 0.5 | 53.7 ± 0.3 | 42.2 ± 0.8 | 160 s | Fine-tuning I_p -robust models with any $p \in \{\infty, 2, 1\}$ for multiple norm robustness for **3 epochs (CIFAR-10) or 1 epoch (ImageNet)** is sufficient to reach competitive robustness in the union of threat models! #### Extreme norm Adversarial Training **Problem:** MAX (Tramèr & Boneh, 2019) and MSD (Maini et al., 2020) are 2-3x **more expensive** than single norm adversarial training. **Note:** Croce & Hein (2020) show that, for linear classifiers, robustness wrt I_{∞} and I_1 (extreme norms) is sufficient for robustness wrt I_p for $p \in (1, \infty)$. We propose Extreme norm Adversarial Training (E-AT), which - performs adversarial training for a **single** norm, l_{∞} or l_1 , for each batch, - adaptively samples the threat model to use, - is as expensive as single norm adversarial training. | | | model | clean | | l_{∞} (ϵ_{\circ} | $_{\circ} = \frac{8}{255}$ | l_2 (ϵ_2 : | = 0.5) | $l_1 (\epsilon_1 :$ | = 12) | union | | |----------|-----------------------------|---|-----------------------|------|-----------------------------------|----------------------------|------------------------|--------|---------------------|-------|--------------|------| | | | RN-50 - l_{∞} (Engstrom et al., 2019) | + FT 88.7
86.2 | -2.5 | 50.9
46.0 | -4.9 | 59.4
70.1 | 10.7 | 5.0
49.2 | 44.2 | 5.0
43.4 | 38.4 | | | Fine-tuning | WRN-34-20 - l_{∞}
(Gowal et al., 2020) | + FT 87.2
+ 88.3 | 1.1 | 56.6
49.3 | -7.3 | 63.7 | 8.1 | 8.5
51.2 | 42.7 | 8.5
46.2 | 37.7 | | CIFAR-10 | l_{∞} -robust models | WRN-28-10 - l_{∞} (*)
(Carmon et al., 2019) | + FT 90.3
90.3 | 0.0 | 59.1
52.6 | -6.5 | 65.7
74.7 | 9.0 | 8.0
54.0 | 46.0 | 8.0
48.7 | 40.7 | | | | WRN-28-10 - l_{∞} (*)
(Gowal et al., 2020) | + FT 89.9
91.2 | 1.3 | 62.9
53.9 | -9.0 | 67.2
76.0 | 8.8 | 10.8
56.9 | 46.1 | 10.8
50.1 | 39.3 | | | | WRN-70-16 - l_{∞} (*)
(Gowal et al., 2020) | + FT 90.7
+ 1.6 | 0.9 | 65.6
54.3 | -11.3 | 66.9
78.2 | 11.3 | 8.1
58.3 | 50.2 | 8.1
51.2 | 43.1 | **ImageNet** | | model | clea | n | l_{∞} (ϵ_{\circ} | $_{\circ} = \frac{4}{255}$ | l_2 (ϵ_2 : | = 2) | l_1 (ϵ_1 : | = 255) | union | | |---|--|-------------|---|-----------------------------------|----------------------------|------------------------|------|------------------------|--------|-------------|------| | | RN-50 - l_{∞} (Engstrom et al., 2019) | + FT 62.9 | | 29.8
27.3 | -2.5 | 17.7
41.1 | 23.4 | 0.0 24.0 | 24.0 | 0.0
21.7 | 21.7 | | Fine-tuning l_{∞} -robust models | RN-50 - l_{∞} (Bai et al., 2021) | + FT 68.2 | | 36.7
29.2 | -7.5 | 15.6
42.1 | 26.5 | 0.0 24.5 | 24.5 | 0.0
22.6 | 22.6 | | | DeiT-S - l_{∞} (Bai et al., 2021) | + FT 66.4 | | 35.6
32.2 | -3.4 | 40.1
46.1 | 6.0 | 3.1 24.8 | 21.7 | 3.1
23.6 | 20.5 | | | XCiT-S - l_{∞} (Debenedetti, 2022) | + FT 72.8 | | 41.7
36.4 | -5.3 | 45.3
51.3 | 6.0 | 2.7
28.4 | 25.7 | 2.7
26.7 | 24.0 | Quick fine-tuning with E-AT is effective on different architectures, datasets, with or without extra data. | | model | clean | | l_{∞} (ϵ_{∞} | $_{\circ} = \frac{8}{255}$ | l_2 (ϵ_2 : | = 0.5) | l_1 (ϵ_1 : | = 12) | union | | |---------------------------|---|----------------------|------|------------------------------------|----------------------------|------------------------|--------|------------------------|-------|--------------|------| | | RN-50 - l_{∞}
(Engstrom et al., 2019) | + FT 88.7
86.2 | -2.5 | 50.9
46.0 | -4.9 | 59.4
70.1 | 10.7 | 5.0 49.2 | 44.2 | 5.0
43.4 | 38.4 | | Fine-tuning | WRN-34-20 - l_{∞} (Gowal et al., 2020) | + FT 87.2
88.3 | 1.1 | 56.6
49.3 | -7.3 | 63.7
71.8 | 8.1 | 8.5
51.2 | 42.7 | 8.5
46.2 | 37.7 | | l_∞ -robust models | WRN-28-10 - l_{∞} (*)
(Carmon et al., 2019) | + FT 90.3
90.3 | 0.0 | 59.1
52.6 | -6.5 | 65.7
74.7 | 9.0 | 8.0
54.0 | 46.0 | 8.0
48.7 | 40.7 | | | WRN-28-10 - l_{∞} (*)
(Gowal et al., 2020) | + FT 89.9
+ 1.2 | 1.3 | 62.9
53.9 | -9.0 | 67.2
76.0 | 8.8 | 10.8
56.9 | 46.1 | 10.8
50.1 | 39.3 | | | WRN-70-16 - l_{∞} (*)
(Gowal et al., 2020) | 90.7
+ FT 91.6 | 0.9 | 65.6
54.3 | -11.3 | 66.9
78.2 | 11.3 | 8.1
58.3 | 50.2 | 8.1
51.2 | 43.1 | **ImageNet** CIFAR-10 | | model | clean | | l_{∞} (ϵ_{\circ} | $_{\circ} = \frac{4}{255}$ | l_2 (ϵ_2 : | = 2) | l_1 (ϵ_1 : | = 255) | union | | |---|--|----------------------------|------|-----------------------------------|----------------------------|------------------------|------|------------------------|--------|-------------|------| | | RN-50 - l_{∞} (Engstrom et al., 2019) | + FT 62.9
58.0 | -4.9 | 29.8
27.3 | -2.5 | 17.7
41.1 | 23.4 | 0.0
24.0 | 24.0 | 0.0
21.7 | 21.7 | | Fine-tuning l_{∞} -robust models | RN-50 - l_{∞} (Bai et al., 2021) | + FT 68.2
60.1 | -8.1 | 36.7
29.2 | -7.5 | 15.6
42.1 | 26.5 | 0.0
24.5 | 24.5 | 0.0
22.6 | 22.6 | | 100 1000001 | DeiT-S - l_{∞}
(Bai et al., 2021) | + FT 66.4
+ ET 62.6 | | 35.6
32.2 | -3.4 | 40.1
46.1 | 6.0 | 3.1
24.8 | 21.7 | 3.1
23.6 | 20.5 | | | XCiT-S - l_{∞}
(Debenedetti, 2022) | + FT 72.8
+ FT 68.0 | -4.8 | 41.7
36.4 | -5.3 | 45.3
51.3 | 6.0 | 2.7
28.4 | 25.7 | 2.7
26.7 | 24.0 | Quick fine-tuning with E-AT allows to obtain SOTA multiple norm robustness with large architectures or datasets with low computational cost! ### Why multiple norm robustness? We test the robustness of various classifiers on CIFAR-10 to **unseen non** I_p -bounded attacks (sparse attacks, adversarial corruptions). | model | clean | comm. | l_{0} | patches | frames | fog | snow | gabor | elastic | jpeg | avg. | union | |------------------|-------|-------|---------|---------|--------|------|------|-------|---------|------|------|-------| | | | corr. | | | | | | | | | | | | NAT | 94.4 | 71.6 | 0.1 | 8.1 | 2.6 | 47.3 | 3.9 | 35.0 | 0.2 | 0.0 | 12.2 | 0.0 | | l_{∞} -AT | 81.9 | 72.6 | 7.3 | 21.6 | 26.2 | 36.0 | 35.9 | 52.5 | 59.4 | 5.1 | 30.5 | 2.0 | | l_2 -AT | 87.8 | 79.2 | 13.2 | 25.0 | 17.7 | 44.9 | 22.1 | 43.5 | 56.6 | 14.0 | 29.6 | 4.5 | | l_1 -AT | 83.5 | 75.0 | 40.9 | 41.3 | 21.1 | 35.6 | 20.6 | 41.2 | 53.3 | 25.5 | 34.9 | 8.6 | | PAT | 82.6 | 76.9 | 23.3 | 37.9 | 21.7 | 53.5 | 25.6 | 41.8 | 53.5 | 13.7 | 33.9 | 8.0 | | SAT | 80.5 | 72.0 | 38.7 | 36.7 | 29.3 | 33.5 | 29.0 | 49.8 | 57.0 | 37.4 | 38.9 | 13.8 | | AVG | 82.0 | 73.6 | 39.7 | 36.8 | 30.8 | 37.2 | 21.1 | 49.9 | 58.1 | 30.4 | 38.0 | 10.9 | | MAX | 80.1 | 71.3 | 35.1 | 34.6 | 32.7 | 34.5 | 35.0 | 53.4 | 58.5 | 33.5 | 39.7 | 15.3 | | MSD | 81.0 | 71.7 | 36.9 | 35.0 | 31.8 | 34.6 | 26.4 | 51.5 | 59.7 | 33.4 | 38.7 | 12.9 | | E-AT | 79.1 | 71.3 | 39.5 | 37.7 | 30.5 | 34.8 | 33.4 | 50.2 | 58.6 | 38.7 | 40.4 | 15.9 | Models trained wrt multiple norms show the highest robustness to unseen attacks. ## Fine-tuning to another I_q -threat model We try to fine-tune a classifier robust wrt l_p with adversarial training wrt l_q for $q \neq p$ (3 epochs for CIFAR-10, 1 epoch for ImageNet). | | CIFA! | R-10 $ l_{\infty}$ | l_2 | l_1 | $egin{aligned} extbf{ImageNet} \ ext{ } clean & ext{ } l_2 & ext{ } l_1 \end{aligned}$ | | | | | | | |---|----------------------|-------------------------|----------------------|----------------------------|---|--|--|--|--|--|--| | WRN-70-16 (Gowal | et al., 2020 |)) - l _∞ (*) | | | DeiT-S (Bai et al., 2021) - l_{∞} | | | | | | | | $\begin{array}{c} \text{original} \\ + \text{FT wrt } l_2 \\ + \text{FT wrt } l_1 \end{array}$ | 90.7
92.8
92.4 | 65.6
47.4
33.9 | 66.9
80.0
74.7 | 8.1
34.0
70.2 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | WRN-70-16 (Gowal | et al., 2020 |)) - l ₂ (*) | | | XCiT-S (Debenedetti, 2022) - l_{∞} | | | | | | | | $\begin{array}{c} \text{original} \\ + \text{FT wrt } l_{\infty} \\ + \text{FT wrt } l_{1} \end{array}$ | 94.1
92.3
92.8 | 43.1
58.5
29.2 | 81.7
73.5
75.7 | 34.6
11.4
68.9 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | RN-18 (Croce & Hei | n, 2021) - | l_1 | | | RN-50 (Engstrom et al., 2019) - l_2 | | | | | | | | $\begin{array}{c} \text{original} \\ + \text{FT wrt } l_{\infty} \\ + \text{FT wrt } l_2 \end{array}$ | 87.1
82.7
88.0 | 22.0
44.2
31.0 | 64.8
66.6
69.8 | 60.3
25.4
39.7 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | Fine-tuning robust classifiers allows to quickly obtain competitive baselines in other threat models!