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Background

* Physical modeling:
« Diffusion, heat, sound, fluid dynamics, etc.

ML and data science method:

» Learn target functions from observed data
* Optimize data-dependent loss

* Physics-informed neural networks (PINN):

* Fit the boundary/initial conditions and minimize a residual term to conform to
the equation

« Differentiation operators on the NN itself
« Challenges:
* Need massive collocation points

« Equations need to be fully specified, e.g., unable to handle incomplete equations
with latent sources

» challenging in optimization, robustness, and uncertainty quantification
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Main contributions

* Incorporating arbitrary differential equations into Gaussian
processes

* Flexible

« Complete and incomplete equations.

» Linear, nonlinear, spatial, temporal, spatio-temporal, etc.
* Robust:

» Works well with a small number of collocation points, even when the
observations are noisy

» Due to the nonparametric nature of GPs, our model is flexible enough to learn
complex functions from data

« Convenient to quantify the uncertainty



Model: Key idea

« Kernel differentiation
« Differential equation is a combination of derivatives and functions
 If f follows a GP, all of f’s derivatives follow GPs.

« We can use kernel differentiation to construct a joint Gaussian prior
distribution for f and all of f’s derivatives’ values
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Model f=u;u;U; 0,3 9]
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Inference

 Variational Inference
« Whitening method to parameterize f: f = An, n~N(0,1I),X = AA”
» Address the strong coupling of f and the kernel parameters
p(f,y,0)=M{0,%) - Mylu,8 1) - MO @, — v, + vi © (4 04 —1)+ g,0])

l

p(f,y,0)=Mn|0,I)- My|An) - MO0|An)
« A multivariate normal ¢(n) as the variational posterior forn, ¢(n) = N(n|u,LL")

Lower bound: £ = - KL (q(n)||MO0,1))+ E,[log(p(y|An))]+ B,[log (p (0]|An))]

* KL :Kullback-Leibler divergence

« Maximize the lower bound to estimate theq(n) and other parameters, e.g.,
kernel parameters, noise variances



Model

* Insight
« With Gaussian variational approximation, the posterior process for f is

still a GP, and maintains the link between the function and its
derivatives in terms of kernel differentiation.

1. predictive distribution is still a GP: p(h|D) = /p(hlf)p(le)df% /p(h|f)q(f|mf,Vf)df= N (h|my,cov(h,h) — cov(h,f) - B-cov(f,h)) b= (u,u,tu,...)
cov( ) is obtained from the kernel K, and its differentiation, see the last slide
m, =cov(h,))X'm; B=X'-X'V,2"

2. new GP defines a new kernel for u (function): cov,e, (u1,u2) = k, (21,22) — cov(uy, f) - B - cov(us, f), wy =u(21), us =u(22), 21 = (1,t1),20 = (22,12)

3. kernel differentiation on the new kernel gives the same covariance as in the predictive distribution:

dcov (us, )
0t

= cov (uy,0,us) — cov(uy, f) - B - cov(f,0,,us), from predictive distribution, link preserves

0COoVpen (U1, u) Ok, (21,22)
atz - 81';2

cov(uy,f)- B - = cov (uy,0,us) — cov(uy, f) - B - cov(f,0,u,)
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Experiments

* Nonlinear pendulum and diffusion-reaction system, with
complete and incomplete(with unknown latent source)
equations

* Real-world datasets
« Metal pollution in Swiss Jura
« Motion capture
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Experiment - Nonlinear pendulum

First row: no damping force

SCHOOL OF
COMPUTING

Second row: with damping force
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Complete equation ;5 +in(6) =0, AutolP-C Complete equation % +sin(6) + b% =0, bis unknown
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Experiment - Nonlinear pendulum
« Comparing with GPR, PINNs

AutolP-I: incomplete equation, AutolP-C: complete equation

COMPUTING

Our model uses 20 collocation points for both settings

Method No damping/Exact training  No damping/Noisy training  Damping/Exact training  Damping/Noisy training
PINN-5 (20) 1.955 + 0.214 1.895 = 0.261 0.310 = 0.019 0.310 £ 0.050
PINN-10 (20) 2.122£0.179 1.824 + 0.231 0.290 = 0.018 0.342 = 0.020
PINN-50 (20) 2.238 £0.541 1.927 = 0.250 0.297 = 0.044 0.361 £ 0.017
PINN-100 (20) 2.042 £0.273 2.407 £ 0.353 0.320 = 0.074 0.384 £ 0.066
PINN-5 (10K) 1.479 £ 0.115 1.783 £ 0.297 0.110 £ 0.015 0.248 £ 0.037
PINN-10 (10k) 1.852 +0.320 1.548 = 0.141 0.049 £+ 0.023 0.194 £ 0.044
PINN-50 (10k) 1.367 = 0.575 1.658 = 0.074 0.00007 £ 0.00001 0.157 £ 0.051
PINN-100 (10k) 1.862 £+ 0.584 1.993 £+ 0.357 0.00007 = 0.00002 0.186 = 0.045
AutolP-I 0.585 = 0.017 0.691 = 0.030 0.212 £ 0.014 0.268 = 0.013
AutoIP-C 0.416 = 0.050 0.488 = 0.036 0.096 £+ 0.004 0.133 = 0.010

No damping RMSE MNLL No damping RMSE MNLL

GPR 1.354 £ 0.005 1.97 £ 0.015 GPR 1.44 +0.017 2.242 + 0.055

AutoIP-1 0.585 = 0.017 1.02+0.013 AutolP-I 0.691 £0.030  1.206 + 0.024

AutolP-C 0.416 £ 0.050  0.892 £ 0.032 AutoIP-C 0.488 £0.036 1.061 £ 0.028

With damping With damping

GPR 0.262 = 0.0003 0.744 = 0.008 GPR 0.381 + 0.018 1.07 + 0.029

AutolP-I 0.212+0.014  0.678 +0.02 AutolP-1 0.268 +0.013  0.937 £ 0.011

AutolP-C 0.096 +0.0035 0.155+ 0.01 AutolP-C 0.133+£0.010 0.428 £0.017

) Exact traini ats 10
(a) Exact training data (b) Noisy training data
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Experiment — diffusion-reaction system

SCHOOL OF
COMPUTING

du 9%u . .
Complete equation, AutolP-I iy 0001{ +5u” —5u =0, Comparing with GPR, PINNs
. ou 0%u ) )
Incomplete equation, AutolP-C =~ —0. 00010— +9(z,t) =0, Our model uses 100 collocation points
Complete equation result

GPR AutoIP-I  AutoIlP-C  PINN (100) PINN (10K)
0.2528 0.1869 0.1865 0.4388 0.0169

(a) Ground-truth (b) GPR: RMSE = 0.2528 ¢) AutoIP-I: RMSE = 0.1869  (d) AutoIP-C: RMSE = 0.1865

(e) GPR predictive variance f) AutoIP-I predictive variance (g) AutoIP-C predictive variance 11
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Experiments — real-world datasets

* Motion capture

ou
ot
Method Joint 1 Joint 50
GPR 1.727 £+ 0.026 0.257 = 0.007
LFM 1.671 = 0.016 0.257 = 0.006
AutoIP-T 1.511 + 0.007 0.224 + 0.006
AutolP-H 1.489 + 0.03 0.225 += 0.005
AutolP-W  1.103 +0.027 0.215 = 0.009
(a) RMSE
Method Joint 1 Joint 50
GPR 1.368 = 0.020 3.431 = 0.242
LFM 1.721 = 0.020 N/A
AutoIP-T 1.138 = 0.024 2.615+0.149
AutolP-H 1.208 = 0.081 2.664 +=0.154
AutolP-W  1.121 £0.084 2.495+0.111
(b) NMLL

SCHOOL OF
COMPUTING

-+ b-u(t) —c=g(t), band care unknown; g(t) is the latent force

AutolP-T: uses the training inputs as the collocation points

AutolP-H: uses 200 random collocation points in the training region only
AutolP-W: uses 200 random collocation points across the whole-time
span of the trajectory

12
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Experiments — real-world datasets

* Metal pollution

0*u 0%u
+ =g(z,
611712 811722 9( 1y 2)
GPR LFM AutolP
Task 1 0.299 +0.009 0.384 =0.010 0.284 +0.011
Task 2 0.304 +£0.012 0.381 =0.011 0.284 +0.008
Task 3 0.232+0.009 0.358 =0.005 0.224 +0.006
Task4 0.261 £0.005 0.296 = 0.005 0.247 +0.004
(a) RMSE
GPR LFM AutolP
Task 1 1.16 = 0.064 1.36 = 0.058 1.10 =0.069
Task2 1.274+0.093 1.471+0.157 1.219+0.129
Task 3  0.979 £+ 0.058 1.31 +20.044 0.849 + 0.067
Task4 1.383+0.098 1.496 =0.097 1.303 +£0.091
(b) NMLL

SCHOOL OF
COMPUTING

Our model uses 50 points for training; the collocation points are exactly the
training inputs.

Task 1, predict Zn with the location, and Cd, Ni concentration
Task 2, predict Zn with the location, and Co, Ni, Cr concentration
Task 3, predict Ni with the location, and Cr concentration

Task 4, predict Cr with the location, and Co concentration

13
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Welcome to our poster!
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