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Background
• Physical modeling:

• Diffusion, heat, sound, fluid dynamics, etc.
• ML and data science method:

• Learn target functions from observed data
• Optimize data-dependent loss

• Physics-informed neural networks (PINN):
• Fit the boundary/initial conditions and minimize a residual term to conform to 

the equation
• Differentiation operators on the NN itself
• Challenges:

• Need massive collocation points
• Equations need to be fully specified, e.g., unable to handle incomplete equations 

with latent sources
• challenging in optimization, robustness, and uncertainty quantification
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Main contributions
• Incorporating arbitrary differential equations into Gaussian 

processes
• Flexible

• Complete and incomplete equations. 
• Linear, nonlinear, spatial, temporal,  spatio-temporal, etc. 

• Robust:
• Works well with a small number of collocation points, even when the 

observations are noisy
• Due to the nonparametric nature of GPs, our model is flexible enough to learn 

complex functions from data 
• Convenient to quantify the uncertainty

3



• Kernel differentiation
• Differential equation is a combination of derivatives and functions
• If f follows a GP, all of f’s derivatives follow GPs.
• We can use kernel differentiation to construct a joint Gaussian prior 

distribution for f and all of f’s derivatives’ values

Model: Key idea 
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Model 
• Joint probability

prior over f observation likelihood virtual likelihood to conform to ODEs/PDEs

at collocation inputs

latent source (if exists)

For convenience, 

at training inputs
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Inference
• Variational Inference
• Whitening method to parameterize f: 

• Address the strong coupling of f and the kernel parameters

• A multivariate normal        as the variational posterior for   ,

•
• Maximize the lower bound to estimate the          and other parameters, e.g., 

kernel parameters, noise variances

: Kullback-Leibler divergence

Lower bound:

6



• Insight
• With Gaussian variational approximation, the posterior process for f is 

still a GP, and maintains the link between the function and its 
derivatives in terms of kernel differentiation.

Model 
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1. predictive distribution is still a GP:

2. new GP defines a new kernel for u (function):

3. kernel differentiation on the new kernel gives the same covariance as in the predictive distribution:



Experiments
• Nonlinear pendulum and diffusion-reaction system, with 

complete and incomplete(with unknown latent source) 
equations
• Real-world datasets
• Metal pollution in Swiss Jura
• Motion capture
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Experiment - Nonlinear pendulum
Second row: with damping forceFirst row: no damping force 

Complete equation                           AutoIP-C

Incomplete equation                         AutoIP-I

Complete equation                                  b is unknown

Incomplete equation
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Experiment - Nonlinear pendulum
• Comparing with GPR, PINNs
AutoIP-I: incomplete equation, AutoIP-C: complete equation
Our model uses 20 collocation points for both settings
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Experiment – diffusion-reaction system
Complete equation, AutoIP-I

Incomplete equation, AutoIP-C

Comparing with GPR, PINNs

Our model uses 100 collocation points

Complete equation result
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Experiments – real-world datasets
• Motion capture

b and c are unknown; g(t) is the latent force

AutoIP-T: uses the training inputs as the collocation points
AutoIP-H: uses 200 random collocation points in the training region only
AutoIP-W: uses 200 random collocation points across the whole-time 
span of the trajectory
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Experiments – real-world datasets
• Metal pollution

Task 1, predict Zn with the location, and Cd, Ni concentration
Task 2, predict Zn with the location, and Co, Ni, Cr concentration
Task 3, predict Ni with the location, and Cr concentration
Task 4, predict Cr with the location, and Co concentration

Our model uses 50 points for training; the collocation points are exactly the
training inputs.
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Welcome to our poster!
dl932@cs.utah.edu
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