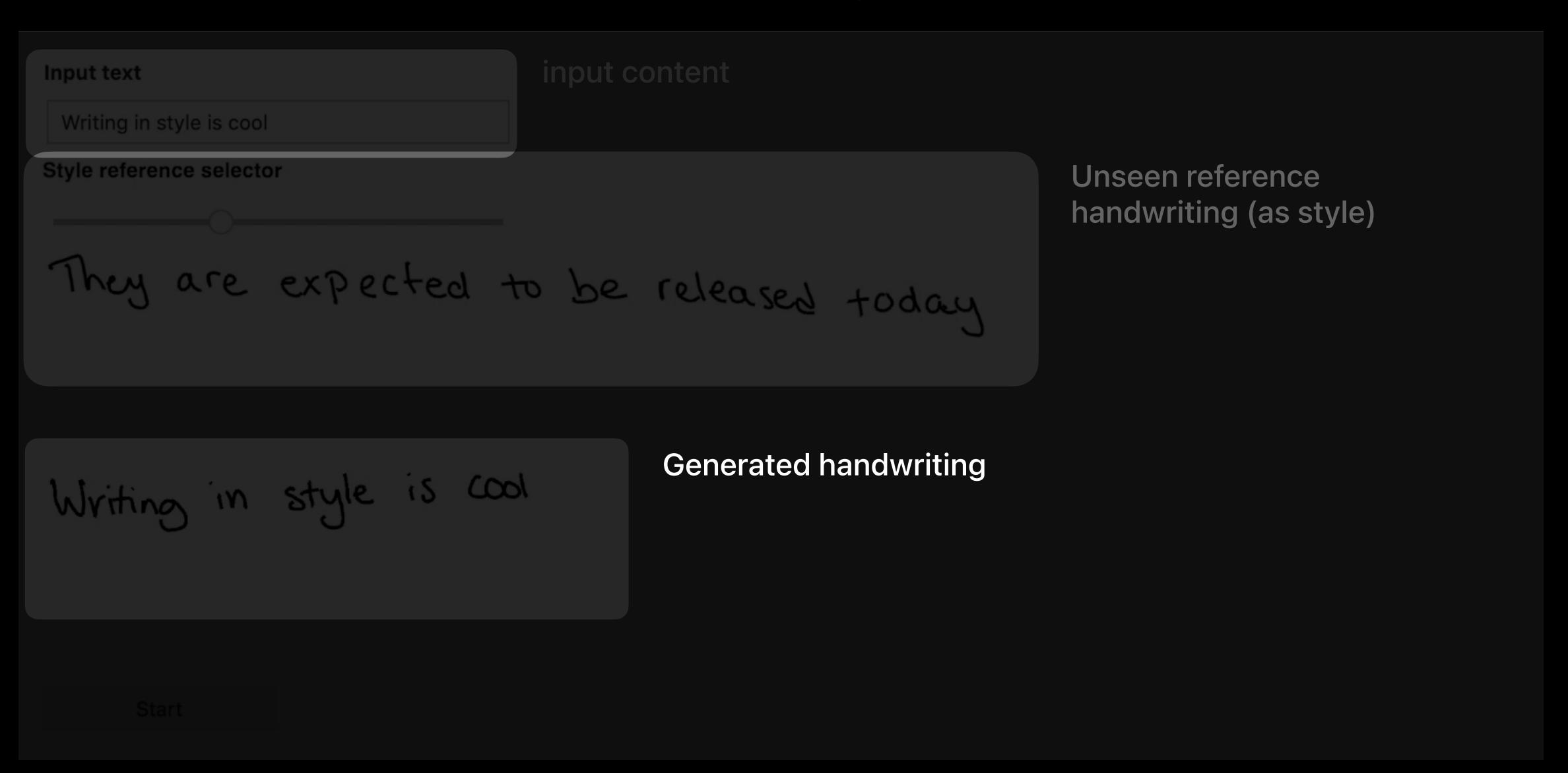


Unsupervised Learning of Controllable Generative Sequence Models

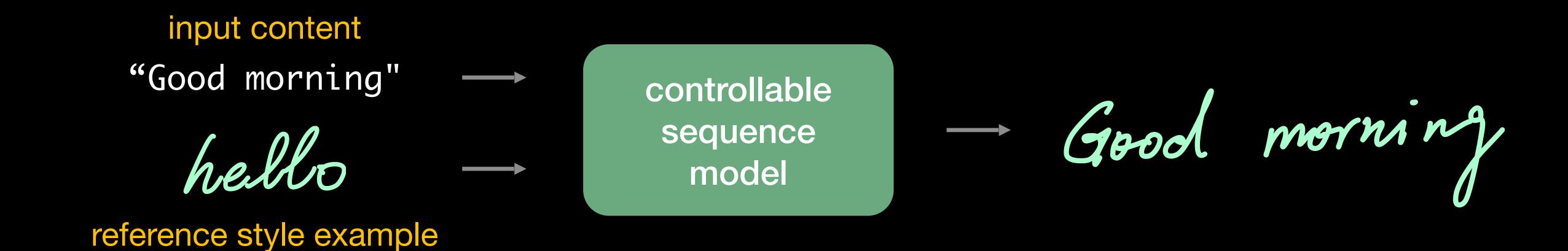
Jen-Hao Rick Chang¹, Ashish Shrivastava^{1,2}, Hema Koppula¹, Xiaoshuai Zhang³, Oncel Tuzel¹

¹ Apple Inc., ² Cruise, ³ University of California, San Diego

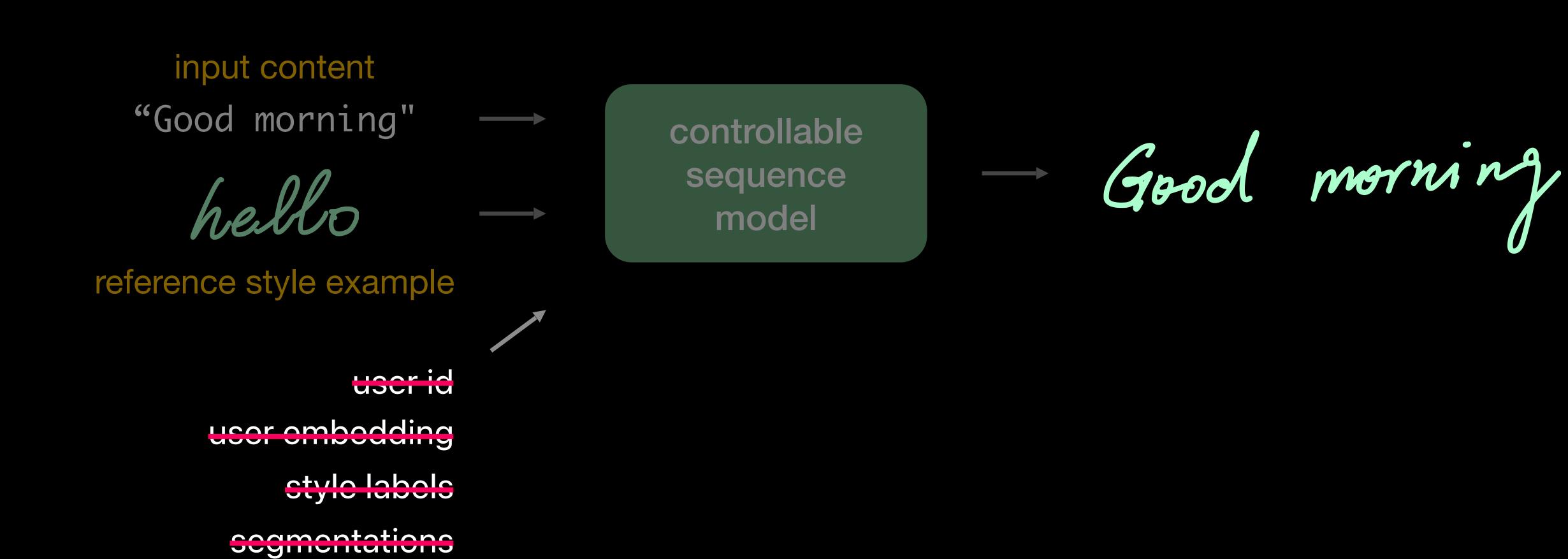
Quick Demo of our Handwriting Model



Controllable Sequence Models



Controllable Sequence Models

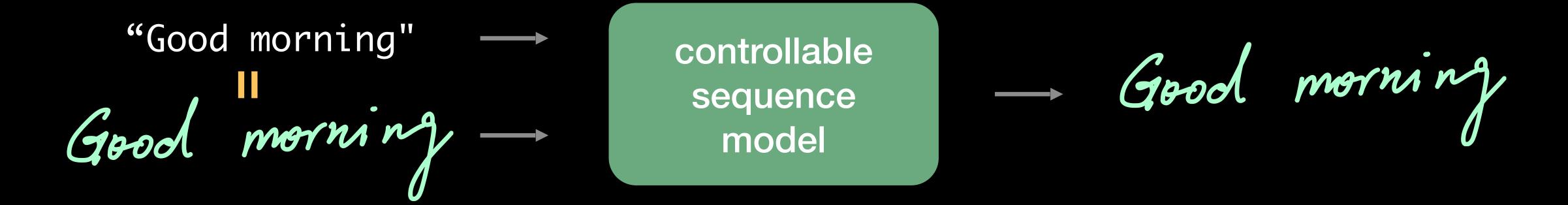


Our Dataset

handwriting	content
hello	hello
Coffee	Coffee
Computer	Computer
Magic Ricks	Magic tricks
	•

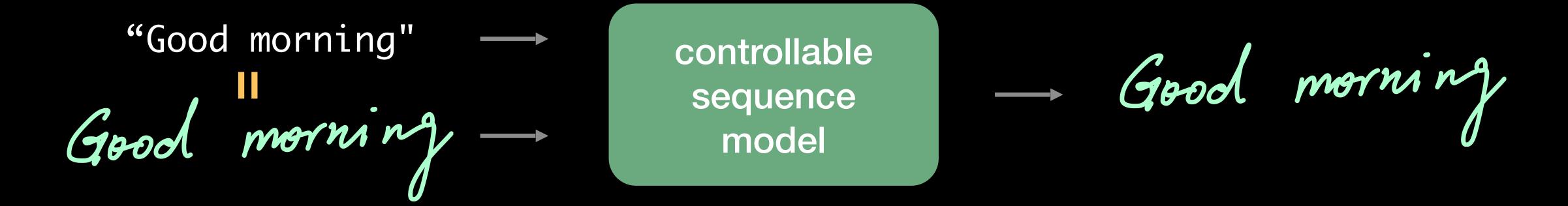
style writes the same content

Main Challenge: Training-Inference Mismatch

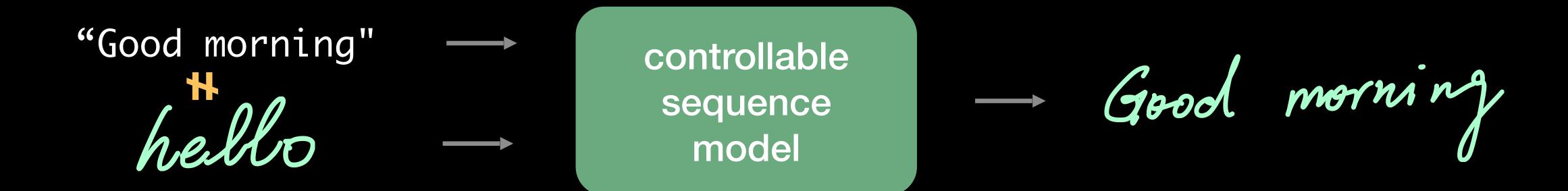


Main Challenge: Training-Inference Mismatch

During training



During inference

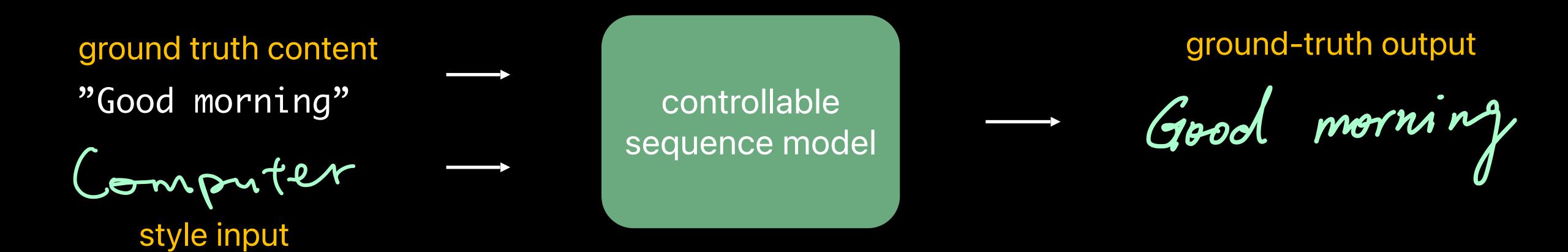


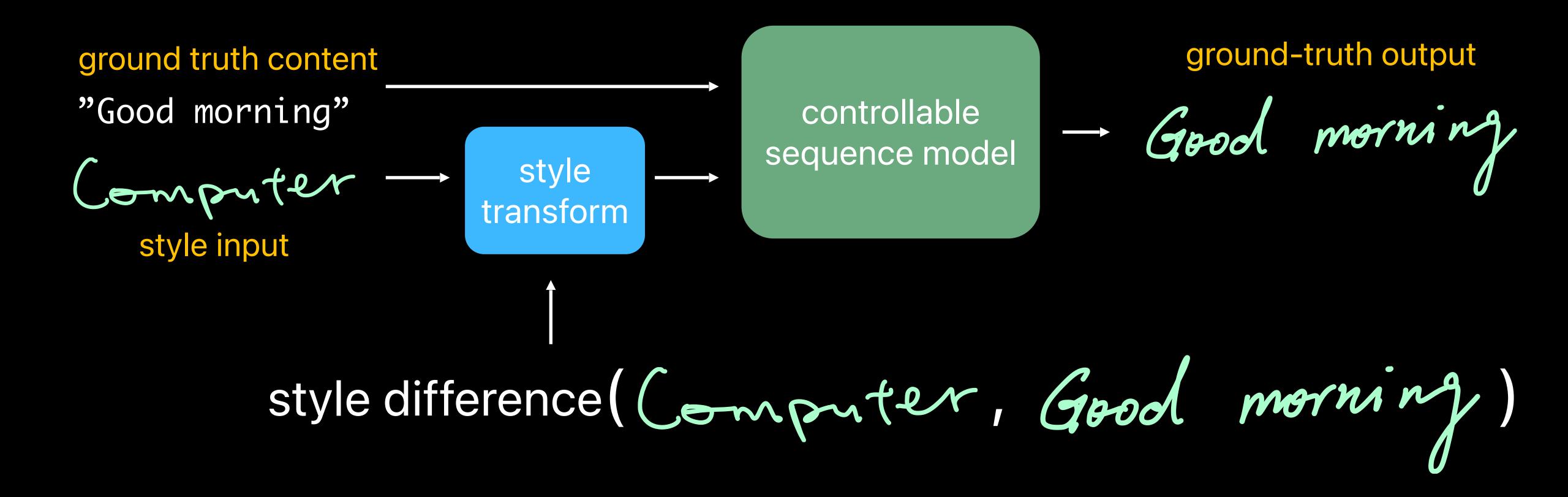
We propose a simple training strategy to tackles the training-inference mismatch

```
two training samples
```

```
("Good morning", Good morning)

("computer", Computer")
```





During inference



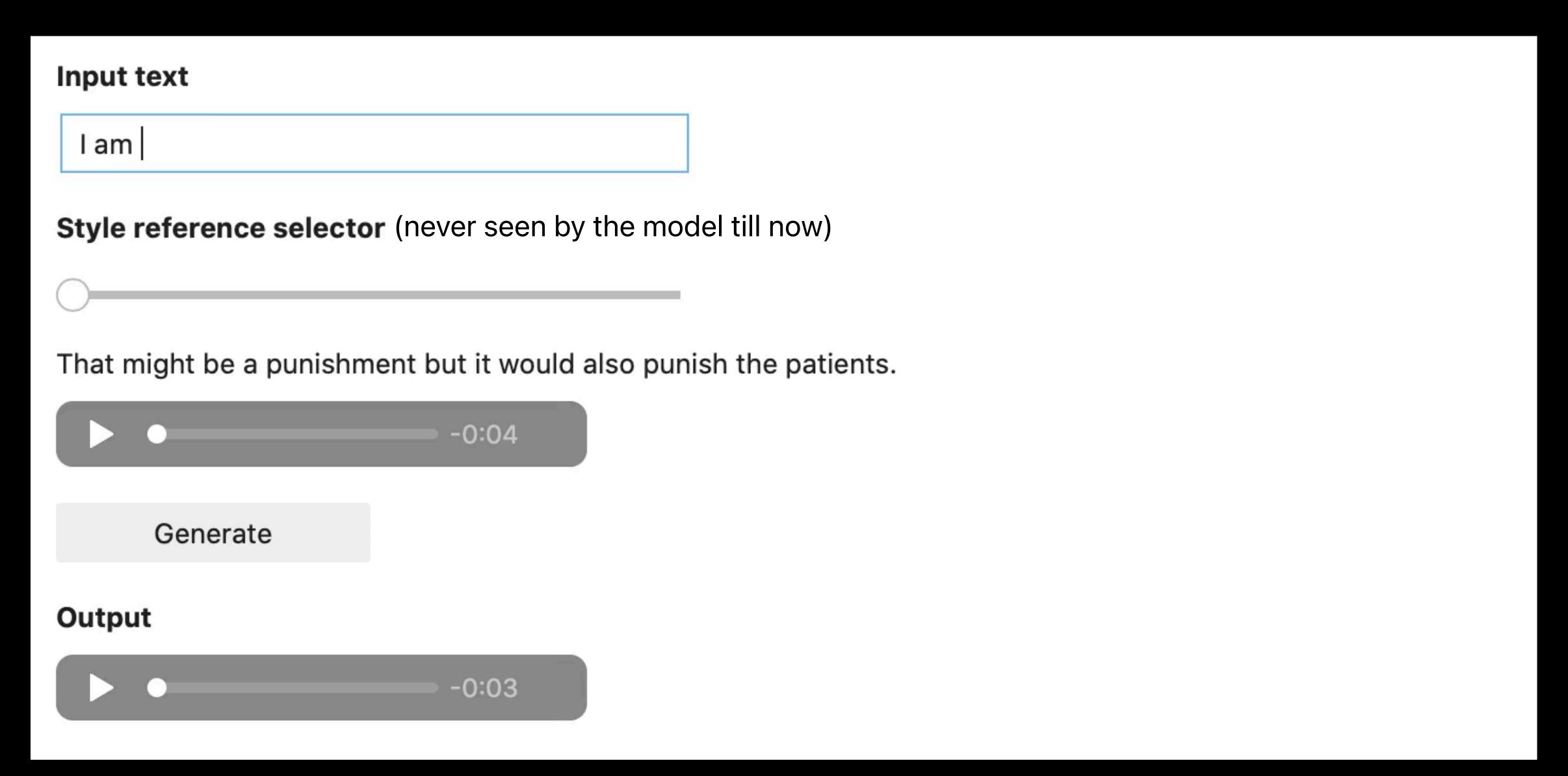
Style Interpolation By Design

That is why we are style 1 Style equalitation Steple equalization Style equalization Style equalization Style equalization style 2 Some have accepted

Sample Style from Prior

style is subtle but powerful Hayle is mostle but pouverful style is subtubut powerful Myle is subtre 1Mt panaquil Style is subtle bute powerful style is subtle but powerful Silve is subtle but powerful

Demo (Speech Synthesis, trained on LibriTTS-960)



More results and details at apple.github.io/ml-style-equalization/

