PINs: Progressive Implicit Networks for Multi-Scale Neural Representations

Zoe Landgraf*+ Alexander Sorkine-Hornung+, Ricardo Silveira Cabral +

Imperial College London* , Meta +

ICML 2022, Spotlight presentation

Introduction

What are Neural Implicit Representations

Introduction

Popular as effective scene encoders

1) Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction, R. Chabra et. al., *ECCV 2020*

2) NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, B. Mildenhall, ECCV 2020

3) Neural Scene Graphs for Dynamic Scenes, J. Ost et. al. CVPR 2021

Problem statement

Can't reconstruct scenes with a wide frequency spectrum well:

Reconstruction (Implementation of Fourier Feature Networks¹)

Problem statement

Noise is introduced into smooth regions

Original

Reconstruction (Implementation of Fourier Feature Networks¹)

Why? High frequency components in the positional encoding

Problem statement

Lower frequencies in positional encoding yields blurry reconstructions

Original

Reconstruction (Implementation of Fourier Feature Networks¹)

Problem statement

How do we remove noise in smooth regions while keeping the high frequency detail of the reconstruction?

PINs

8

PINs

PINs

PINs - architecture

Input coordinates

PINs - architecture

Input coordinates

PINs - modularity

Input coordinates

Results – improved reconstruction quality

Reconstruction (Implementation of Fourier Feature Networks¹)

Results – 2D regression examples

Results – 3D regression examples

Reconstruction Level 1 Reconstruction Level 2 Reconstruction Level 3

* Please see main paper for baseline references

Results

PINs: Progressive Implicit Networks for Multi-Scale Neural Representations							
Model	lamp (ChD $\downarrow)$	$car\left(ChD\downarrow\right)$	chair (ChD $\downarrow)$	sofa (ChD $\downarrow)$	motorbike (ChD $\downarrow)$	bed (ChD \downarrow)	camera (ChD $\downarrow)$
FF Nets	$2.5 \pm 3.4 e - 3$	$2.1 \pm 4.8 e - 4$	$0.92{\pm}1.5{\mathrm{e}}{-4}$	$1.5 \pm 5.6 e - 4$	1.0±1.5e-5	$2.83{\pm}5.2{ m e}{-3}$	$3.46{\pm}1.26{\rm e}{-2}$
SIREN	$25.4{\pm}4.2{ m e}{-}3$	$2.2 \pm 5.2 e - 4$	$28.4{\pm}6.7{ m e}{-3}$	$1.6 \pm 5.5 e - 4$	$1.7{\pm}6.4{ m e}{-4}$	$3.22{\pm}6.9{\mathrm e}{-3}$	$2.31{\pm}2.68e{-}3$
SAPE	$6.7 \pm 9.2 e - 2$	$2.2{\pm}6.6{\mathrm{e}}{-4}$	$1.50{\pm}1.1{\rm e}{-}3$	$6.6 {\pm} 0.42$	2.8±3.9e-4	$4.58{\pm}2.4\mathrm{e}{-2}$	$4.38{\pm}2.7\mathrm{e}{-2}$
Ours	1.5±1.0e-4	2.0±5.1e-4	0.87±1.7e-4	1.48±5.4e-4	1.1±6.7e-5	2.79±4.7e-3	2.05±2.7e-3

Table 2. Evaluation on 3D models from 3D Warehouse (3DW) in terms of the bi-directional Chamfer Distance (mm)

Conclusions

• Novel, multi-scale representation with

Progressive positional encoding
 Hierarchical MLP structure

- Improved reconstruction quality and robustness (2D & 3D scenes)
- End-to-end trainable model no explicit per-level supervision

Thank you for your attention

Poster session #2 at 6:30 pm today