
ProgFed: Effective, Communication, and
Computation Efficient Federated Learning by
Progressive Training

Mario FritzHui-Po Wang Sebastian U. Stich Yang He

C I S P A H e l m h o l t z C e n t e r f o r I n f o r m a t i o n S e c u r i t y , G e r m a n y

▪ Federated learning advanced applications of large-scale machine learning systems

▪ Limited bandwidth and computation power have become the main bottleneck

▪ How to further reduce the computation and communication costs while retaining utility?

Introduction

▪ Message compression includes using fewer bits (i.e., quantization) and only sending partial
updates (i.e., sparsification)

▪ Model pruning identifies a slim network within the original network while retaining
performance (usually happens after training)

▪ Model distillation communicates logits rather than gradients (often requires additional data)

▪ In this work, we take advantage of the learning dynamic to reduce the training costs

Prior Work

▪ In progressive learning, models learn from easier tasks (e.g., lower image resolution) and
gradually to complicated tasks (e.g., higher image resolution)

▪ The growing process inherently reduces the communication and computation costs

▪ Challenges
- Not designed for prediction tasks
- Not designed for federated learning

Progressive Learning and its Challenges in Federated Learning

Karras et al.

▪ We propose ProgFed, the first progressive learning framework for federated learning
▪ We divide the entire model into several disjoint components and introduce temporal heads

▪ Extend progressive learning to federated learning

ProgFed

Full model

▪ We propose ProgFed, the first progressive learning framework for federated learning
▪ We divide the entire model into several disjoint components and introduce temporal heads

▪ Extend progressive learning to federated learning

ProgFed

Full model

▪ We propose ProgFed, the first progressive learning framework for federated learning
▪ We divide the entire model into several disjoint components and introduce temporal heads

▪ Extend progressive learning to federated learning

ProgFed

Full model

▪ We propose ProgFed, the first progressive learning framework for federated learning
▪ We divide the entire model into several disjoint components and introduce temporal heads

▪ Extend progressive learning to federated learning

ProgFed

Full model

▪ How do we split the model, and when do we extend the model?
▪ Practical Guideline: the growing cycle (𝑇!) is controlled by #epochs (𝑇) and #stages (𝑆)

▪ The guideline ensures that we only conduct progressive learning in the first half of training and
resume end-to-end training in the rest

Practical Considerations in ProgFed

▪ We assume the loss functions are L-smooth and gradient noise from clients is bounded (c.f.
Assumption 1 and 2 in our paper)

▪ Theorem 1 suggests that sub-models converge, and the full model converges at most two times
slower than the standard way but with much cheaper per-iteration costs

Theoretical Analysis

▪ Dataset: EMNIST, CIFAR-10, CIFAR-100, and BraTS

▪ Centralized settings: ResNet-18, ResNet-152, VGG16, and VGG19 for CIFAR-100

▪ Federated settings: small ConvNets for EMNIST (3400 clients, non-IID) and CIFAR-10 (100 clients,
IID), ResNet-18 for CIFAR-100 (500 clients, non-IID), and U-nets for BraTS (10 clients, IID)

▪ More details can be found in the paper

Experiment Settings

▪ We conduct experiments on four architectures and CIFAR-100 in the centralized setting

Experiments – Computation Efficiency

▪ We conduct experiments on federated classification and segmentation across various datasets
and architectures

Experiments – Communication Efficiency

Federated ResNet-18 on CIFAR-100 w/ linear quantization
(LQ-X) and sparsification (SQ-X)

Experiments – Compatibility

Results of ProgFed with FedAvg, FedProx,
and FedAdam on CIFAR-100

Thank you for your attention
Our code is available: https://github.com/a514514772/ProgFed

