

ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training

CISPA Helmholtz Center for Information Security, Germany

Hui-Po Wang

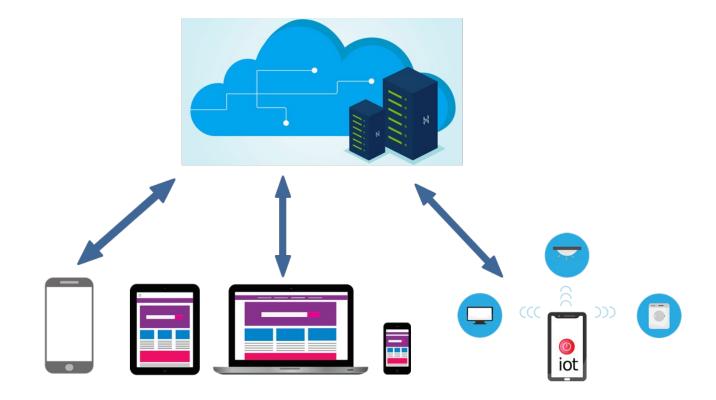
Sebastian U. Stich

Yang He

Mario Fritz

Introduction

- Federated learning advanced applications of large-scale machine learning systems
- Limited bandwidth and computation power have become the main bottleneck
- How to further reduce the computation and communication costs while retaining utility?



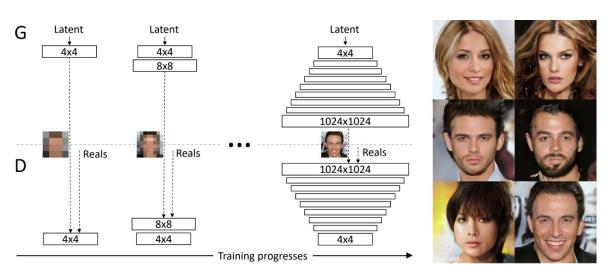
Prior Work

- Message compression includes using fewer bits (i.e., quantization) and only sending partial updates (i.e., sparsification)
- Model pruning identifies a slim network within the original network while retaining performance (usually happens after training)
- Model distillation communicates logits rather than gradients (often requires additional data)
- In this work, we take advantage of the learning dynamic to reduce the training costs

Technique	Computation Reduction	Communication Reduction	Dataset Efficiency
Message Compression	Х	✓	✓
Model Pruning	√ (only for inference)	×	✓
Model Distillation	✓	✓	X
ProgFed (Ours)	✓	✓	✓

Progressive Learning and its Challenges in Federated Learning

- In progressive learning, models learn from easier tasks (e.g., lower image resolution) and gradually to complicated tasks (e.g., higher image resolution)
- The growing process inherently reduces the communication and computation costs
- Challenges
 - Not designed for prediction tasks
 - Not designed for federated learning



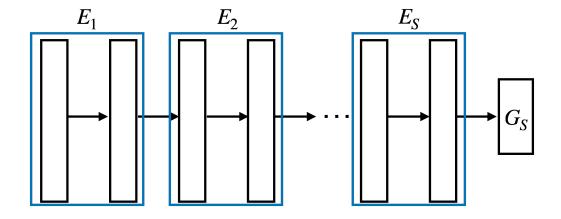
Karras et al.

- We propose ProgFed, the first progressive learning framework for federated learning
- We divide the entire model into several disjoint components and introduce temporal heads

$$\mathcal{M} := G_S \circ \bigcirc_{i=1}^S E_i = G_S \circ E_S \circ \cdots \circ E_2 \circ E_1$$
.

$$\mathcal{M}^s := G_s \circ igotimes_{i=1}^s E_i$$

$$f^s(\mathbf{x}^s) := \mathcal{L} \circ \mathcal{M}^s(\mathbf{x}^s)$$

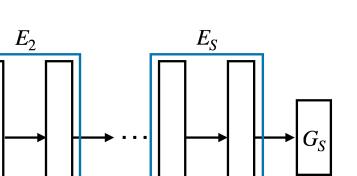


Full model

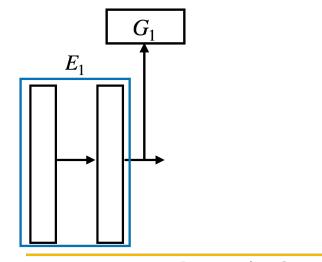
- We propose ProgFed, the first progressive learning framework for federated learning
- We divide the entire model into several disjoint components and introduce temporal heads

$$\mathcal{M} := G_S \circ \bigcirc_{i=1}^S E_i = G_S \circ E_S \circ \cdots \circ E_2 \circ E_1$$
.

$$\mathcal{M}^s := G_s \circ igcop_{i=1}^s E_i$$



$$f^s(\mathbf{x}^s) := \mathcal{L} \circ \mathcal{M}^s(\mathbf{x}^s)$$

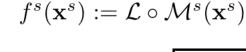


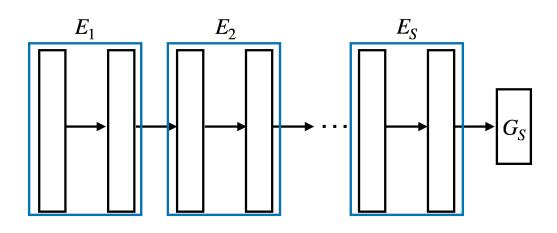
Full model

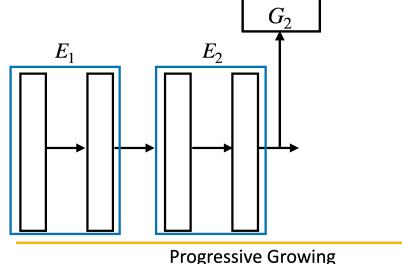
- We propose ProgFed, the first progressive learning framework for federated learning
- We divide the entire model into several disjoint components and introduce temporal heads

$$\mathcal{M} := G_S \circ \bigcirc_{i=1}^S E_i = G_S \circ E_S \circ \cdots \circ E_2 \circ E_1.$$

$$\mathcal{M}^s := G_s \circ igcop_{i=1}^s E_i$$







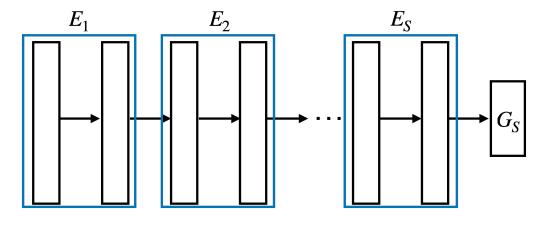
Full model

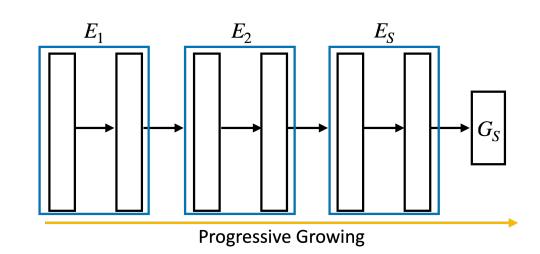
- We propose ProgFed, the first progressive learning framework for federated learning
- We divide the entire model into several disjoint components and introduce temporal heads

$$\mathcal{M} := G_S \circ \bigcirc_{i=1}^S E_i = G_S \circ E_S \circ \cdots \circ E_2 \circ E_1.$$

$$\mathcal{M}^s := G_s \circ igcop_{i=1}^s E_i$$

$$f^s(\mathbf{x}^s) := \mathcal{L} \circ \mathcal{M}^s(\mathbf{x}^s)$$





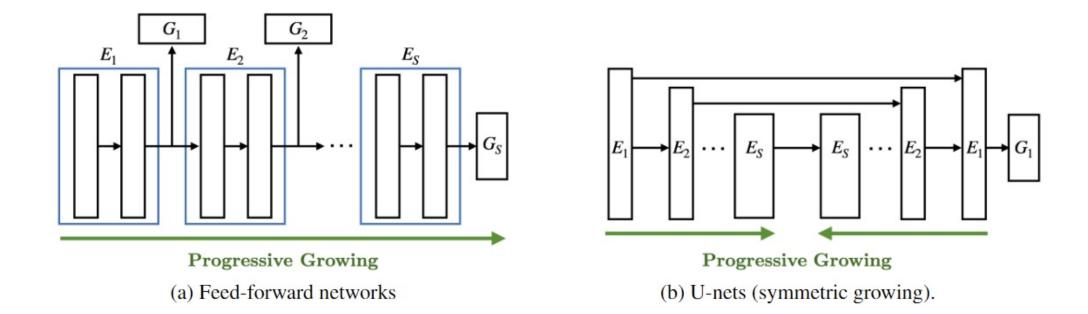
Full model

Practical Considerations in ProgFed

- How do we split the model, and when do we extend the model?
- Practical Guideline: the growing cycle (T_s) is controlled by #epochs (T) and #stages (S)

$$T_s = \frac{T}{2S}$$
 for $s < S$, $T_S = \frac{2T(S+1)}{2S}$, such that $T = \sum_{s=1}^{S} T_s$

 The guideline ensures that we only conduct progressive learning in the first half of training and resume end-to-end training in the rest



Theoretical Analysis

- We assume the loss functions are L-smooth and gradient noise from clients is bounded (c.f. Assumption 1 and 2 in our paper)
- Theorem 1 suggests that sub-models converge, and the full model converges at most two times slower than the standard way but with much cheaper per-iteration costs

Theorem 1. Let Assumptions 1 and 2 hold, and let the stepsize in iteration t be $\gamma_t = \alpha_t \gamma$ with $\gamma = \min\left\{\frac{1}{L}, \left(\frac{F_0}{\sigma^2 T}\right)^{\frac{1}{2}}\right\}, \alpha_t = \min\left\{1, \frac{\langle \nabla f(\mathbf{x}_t)_{|E_s}, \nabla f^s(\mathbf{x}_t^s)_{|E_s}\rangle}{\|\nabla f^s(\mathbf{x}_t^s)_{|E_s}\|^2}\right\}$. Then it holds for any $\epsilon > 0$,

• $\frac{1}{T} \sum_{t=0}^{T-1} \alpha_t^2 \|\nabla f^s(\mathbf{x}_t^s)_{|E_s}\|^2 < \epsilon$, after at most the following number of iterations T:

$$\mathcal{O}\left(\frac{\sigma^2}{\epsilon^2} + \frac{1}{\epsilon}\right) \cdot LF_0. \tag{5}$$

• Let $q := \max_{t \in [T]} \left(q_t := \frac{\|\nabla f(\mathbf{x}_t)\|}{\alpha_t \|\nabla f^s(\mathbf{x}_t^s)_{|E_s}\|} \right)$, then $\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 < \epsilon$ after at most the following iterations T:

$$\mathcal{O}\left(\frac{q^4\sigma^2}{\epsilon^2} + \frac{q^2}{\epsilon}\right) \cdot LF_0, \tag{6}$$

where $F_0 := f(\mathbf{x}_0) - (\min_{\mathbf{x}} f(\mathbf{x})).$

Experiment Settings

- Dataset: EMNIST, CIFAR-10, CIFAR-100, and BraTS
- Centralized settings: ResNet-18, ResNet-152, VGG16, and VGG19 for CIFAR-100
- <u>Federated settings</u>: small ConvNets for EMNIST (3400 clients, non-IID) and CIFAR-10 (100 clients, IID), ResNet-18 for CIFAR-100 (500 clients, non-IID), and U-nets for BraTS (10 clients, IID)
- More details can be found in the paper

Experiments – Computation Efficiency

We conduct experiments on four architectures and CIFAR-100 in the centralized setting

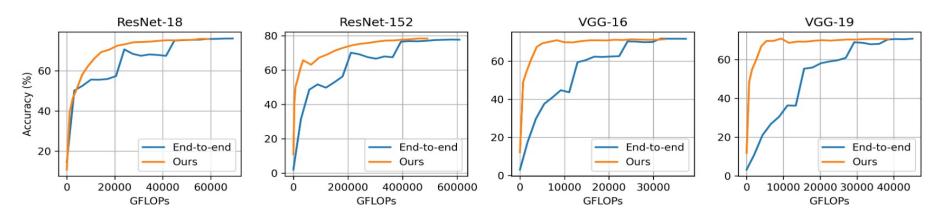


Figure 2: Accuracy (%) vs. GFLOPs on CIFAR-100 in the centralized setting.

Table 2. Results on CIFAR-100 in the centralized setting.

	Accı	ıracy	Reduction		
	End-to-end	Ours	Walltime	FLOPs	
ResNet18	76.08±0.12	75.84 ± 0.28	-24.75%	-14.60%	
ResNet152	77.77 ± 0.38	78.57 ± 0.33	-22.75%	-19.68%	
VGG16	71.79 ± 0.15	71.54 ± 0.45	-14.57%	-13.02%	
VGG19	70.81 ± 1.18	70.90 ± 0.43	-22.10%	-14.43%	

Experiments – Communication Efficiency

 We conduct experiments on federated classification and segmentation across various datasets and architectures

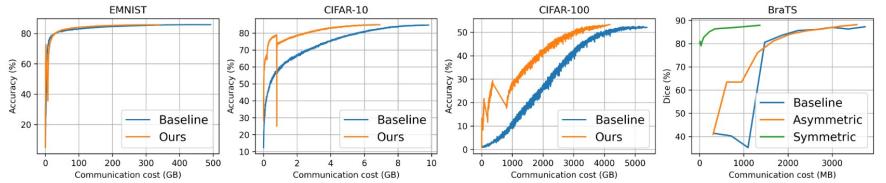


Figure 5: Communication cost vs. Accuracy (%) in federated settings on EMNIST (3400 clients, non-IID), CIFAR-10 (100 clients, IID), CIFAR-100 (500 clients, non-IID), and BraTS (10 clients, IID).

Table 3. Results in federated settings. We report accuracy (%) for classification and Dice scores (%) for segmentation, followed by cost reduction (CR) as compared to the baselines (end-to-end).

	Baseline	Ours	CR
EMNIST	85.75 ± 0.11	85.67 ± 0.06	-29.49%
CIFAR-10	84.67 ± 0.14	84.85 ± 0.30	-29.70%
CIFAR-100	52.08 ± 0.44	53.23 ± 0.09	-22.90%
BraTS (Aym.)	86.77 ± 0.45	$87.66 \pm 0.49 \\ 87.96 \pm 0.03$	-5.02%
BraTS (Sym.)	86.77 ± 0.45		-63.60 %

Experiments – Compatibility

Federated ResNet-18 on CIFAR-100 w/ linear quantization (LQ-X) and sparsification (SQ-X)

	Float	LQ-8	LQ-4	LQ-2	SP-25	SP-10	LQ-8 +SP-25	LQ-8 +SP-10
	Accuracy							
Baseline Ours	52.54 53.25	49.40 53.07	49.55 52.32	47.26 52.87	51.23 52.13	51.79 51.86	50.79 52.05	50.97 52.32
	Compression Ratio (%)							
Baseline Ours	100 77.10	25.00 19.28	12.50 9.64	6.25 4.82	25.00 19.28	10.00 7.71	6.25 4.82	2.50 1.93

Results of ProgFed with FedAvg, FedProx, and FedAdam on CIFAR-100

EMNIST						
End-to-end FedProg (S=4)	FedAvg FedProx 85.75 86.36 85.67 86.08		FedAdam 86.53 86.13			
CIFAR-100						
End-to-end FedProg (S=4)	FedAvg 52.08 53.23	FedProx 53.25 54.28	FedAdam 56.21 60.55			

Thank you for your attention

Our code is available: https://github.com/a514514772/ProgFed

