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This study analyzes the diversity of transformations in piecewise linear DNNs.
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Gating states in piecewise linear DNNs
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• Given a piecewise linear DNN, the mapping from 𝑥 to 𝑦:

𝑦 = 𝑔 𝑧𝐿+1 ,

𝑧𝐿+1 = 𝑊𝐿+1𝝈𝐿 …𝝈2 𝑊2𝝈1 𝑊1𝑥 + 𝑏1 + 𝑏2 … + 𝑏𝐿+1

gating states

…

E.g., for ReLU layers, 𝜎𝑙,𝑖 = ቊ
1, 𝑧𝑙,𝑖 ≥ 0

0, 𝑧𝑙,𝑖 < 0
𝝈𝑙 = 𝑑𝑖𝑎𝑔 𝜎𝑙,1, … , 𝜎𝑙,𝑑 ,

𝑥1

𝑥2

𝑦

A simple DNN

low diversity of gating states

Different gating states lead to different transformations.

The diversity of gating states determines the complexity of a DNN.
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Definitions of three complexity metrics: 𝑯 𝚺 , 𝐈 𝐗; 𝚺 , 𝑰(𝑿; 𝚺; 𝐘)
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Let Σ = [𝜎1, 𝜎2, … , 𝜎𝐿] denote the random variable of all gating states in all layers of the DNN.

• 𝑯 𝚺 : the entropy of gating states among all inputs.

• 𝑰 𝑿; 𝚺 : the complexity of transformations that are caused by the input. 

Both the random sampling operation and the dropout operation 

introduce additional uncertainty that is not caused by the input.

• 𝑰 𝑿; 𝚺; 𝒀 : the complexity of transformations that are caused by inputs and 
used for inference.



Properties of transformation complexity metrics
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These properties ensure the trustworthiness of the complexity metrics.

Non-negativity

Monotonicity 1

Monotonicity 2
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We prove the negative correlation between complexity 𝐻(Σ𝑙) and entanglement 𝑇𝐶(Σ𝑙).

Negative correlation between complexity and entanglement

𝑇𝐶 Σ𝑙 measures the dependence 
of different feature dimensions.

Verification of negative relationship between 
complexity 𝑯 𝚺𝒍 and entanglement 𝑻𝑪(𝚺𝒍)

𝐻 Σ𝑙 + 𝑇𝐶 Σ𝑙 = 𝐶𝑙

entanglementcomplexity



Three phenomena in the training process
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• Phenomenon 1: For most traditional stacked 

DNNs, the transformation first decreased and 

then increased.

• Phenomenon 2: For residual DNNs with skip-

connections, the complexity increased 

monotonously in the early stage and saturated 

later.

• Phenomenon 3: For DNNs that contain 

additional uncertainty (e.g., VAE), the difference 

between 𝐻 Σ𝑙 and 𝐼 𝑋; Σ𝑙 gradually decreased 

during the training process.
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We found that 

(1) the complexity of a DNN did not monotonously increase with the network depth. 

(2) the complexity of transformations did not increase monotonously along with the 

increase of the complexity of tasks.

The ceiling of a DNN’s complexity
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• Utility of minimizing the transformation complexity: reducing the gap between 

the testing loss and the training loss, alleviating the over-fitting problem. 

Learning a DNN with minimum complexity 

• We propose the following loss to penalize a DNN’s complexity, thereby avoiding 

learning an over-complex DNN.



Negative correlation between transformation complexity

and adversarial robustness
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For adversarial robustness, we found that there is a negative correlation between 
transformation complexity and adversarial robustness.

• DNNs with low transformation complexity usually exhibited high adversarial robustness

• DNNs with high transformation complexity were usually sensitive to adversarial perturbations. 

The minimum L2 norm of the 
adversarial perturbations increased 
along with the increase of the 
weight of the complexity loss λ.



Simple DNNs usually have higher adversarial transferability
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For adversarial transferability, we found that simple DNNs encoded common 
knowledge that could be transferred to DNNs learned for the same task.

• adversarial perturbations for complex DNNs could not be well transferred to simple DNNs

• adversarial perturbations for simple DNNs could be transferred to complex DNNs. 



Summary
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• We define three metrics to evaluate the complexity of transformations in 
piecewise linear DNNs, which have a great theoretical extensibility. 

• We prove the negative correlation between the complexity and the 
entanglement of transformations. 

• Comparative studies reveal the ceiling of a DNN’s complexity.

• We further use the transformation complexity as a loss to learn a minimum-
complexity DNN, which also reduces the gap between the training loss and 
the testing loss. 
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