ME-GAN: Learning Panoptic Electrocardio Representations for Multi-view ECG Synthesis Conditioned on Heart Diseases

Jintai Chen*1, Kuanlun Liao*1, Kun Wei², Haochao Ying³4, Danny Z. Chen⁵, Jian Wu⁶

¹College of Computer Science and Technology, Zhejiang University, Hangzhou, China

²School of Electronic Engineering, Xidian University, Xi'an, China

³School of Public Health, Zhejiang University, Hangzhou, China

⁴The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China

⁵Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA

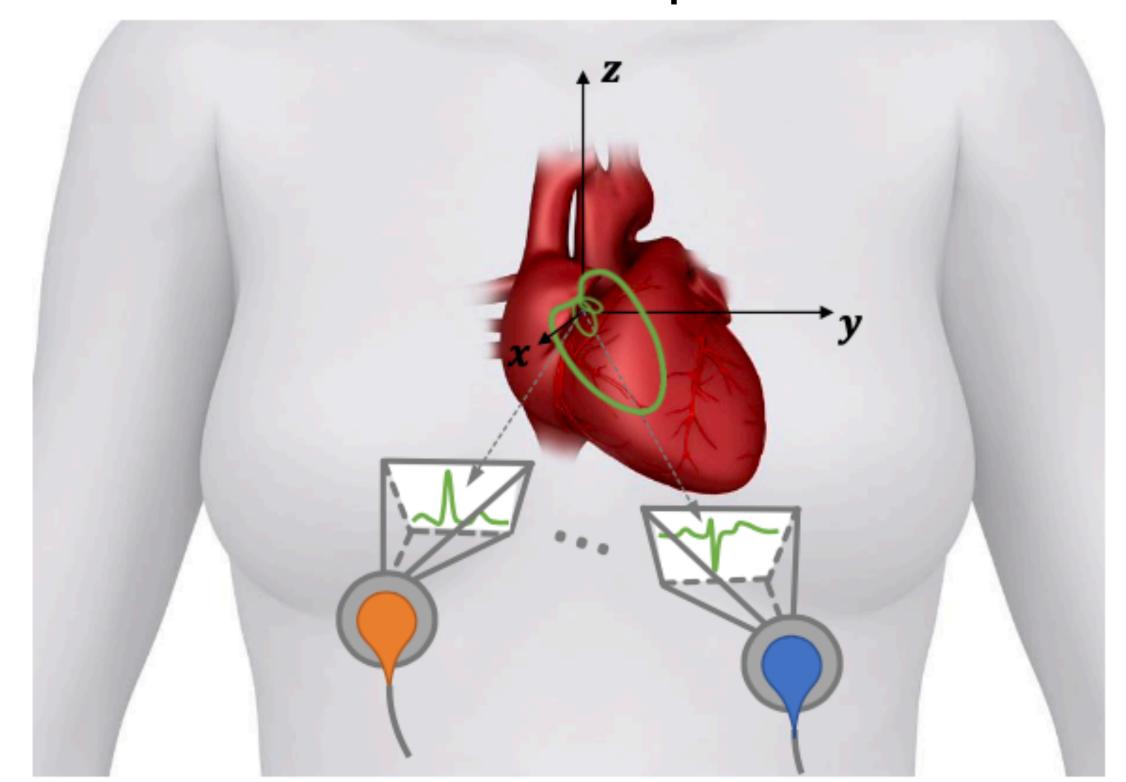
⁶The Second Affiliated Hospital School of Medicine, School of Public Health, and Institute of Wenzhou, Zhejiang University, Hangzhou, China

Background

- ECG is a widely used noninvasive diagnostic tool for heart diseases.
- Synthesizing ECG data is thus quiet helpful to increasing training samples, privacy protection, and annotation burden reduction

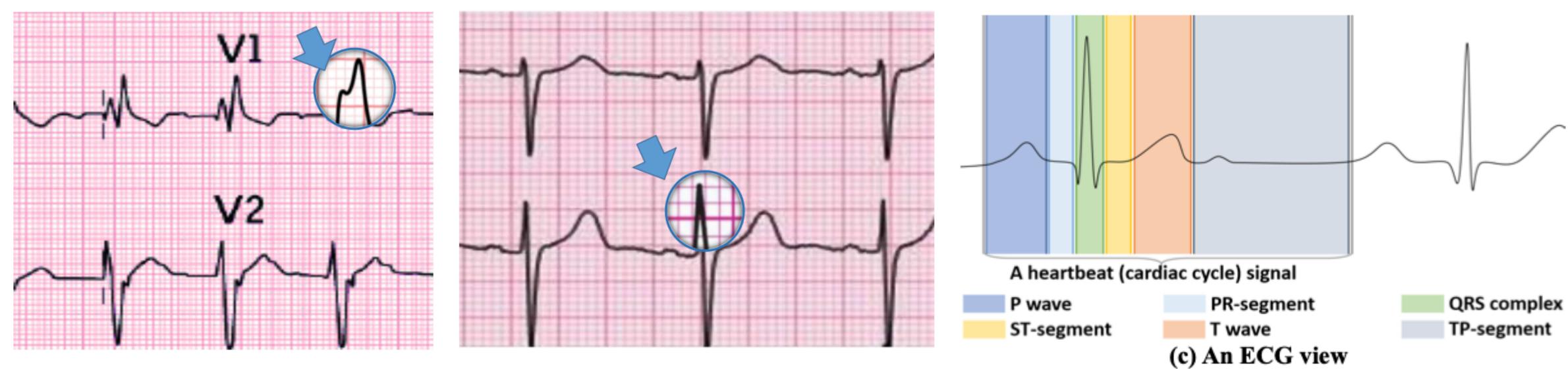
Issues

- How to ensure the multi-view ECG synthesis is trusty?
 - Different views were highly correlated because they represent the same heart beat signals from different viewpoints



Issues

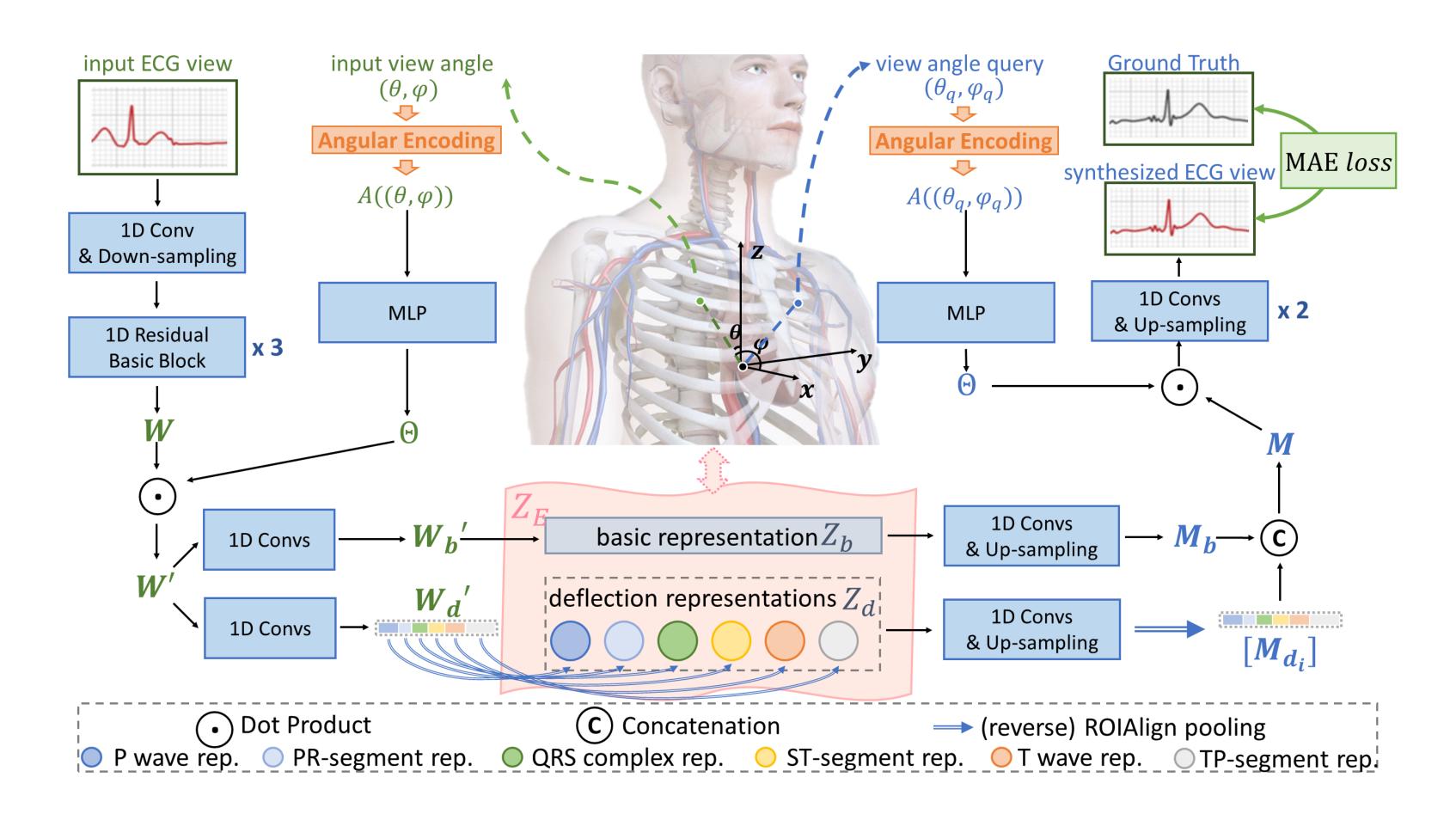
- How to synthesize ECG conditioned on heart diseases?
 - ECG manifestations of some heart diseases are often localized in specific waveforms and were shown as some fine-grained waveform deformations.



Abnormal waveform with LBBB.

Normal waveform at R peak.

Related Work



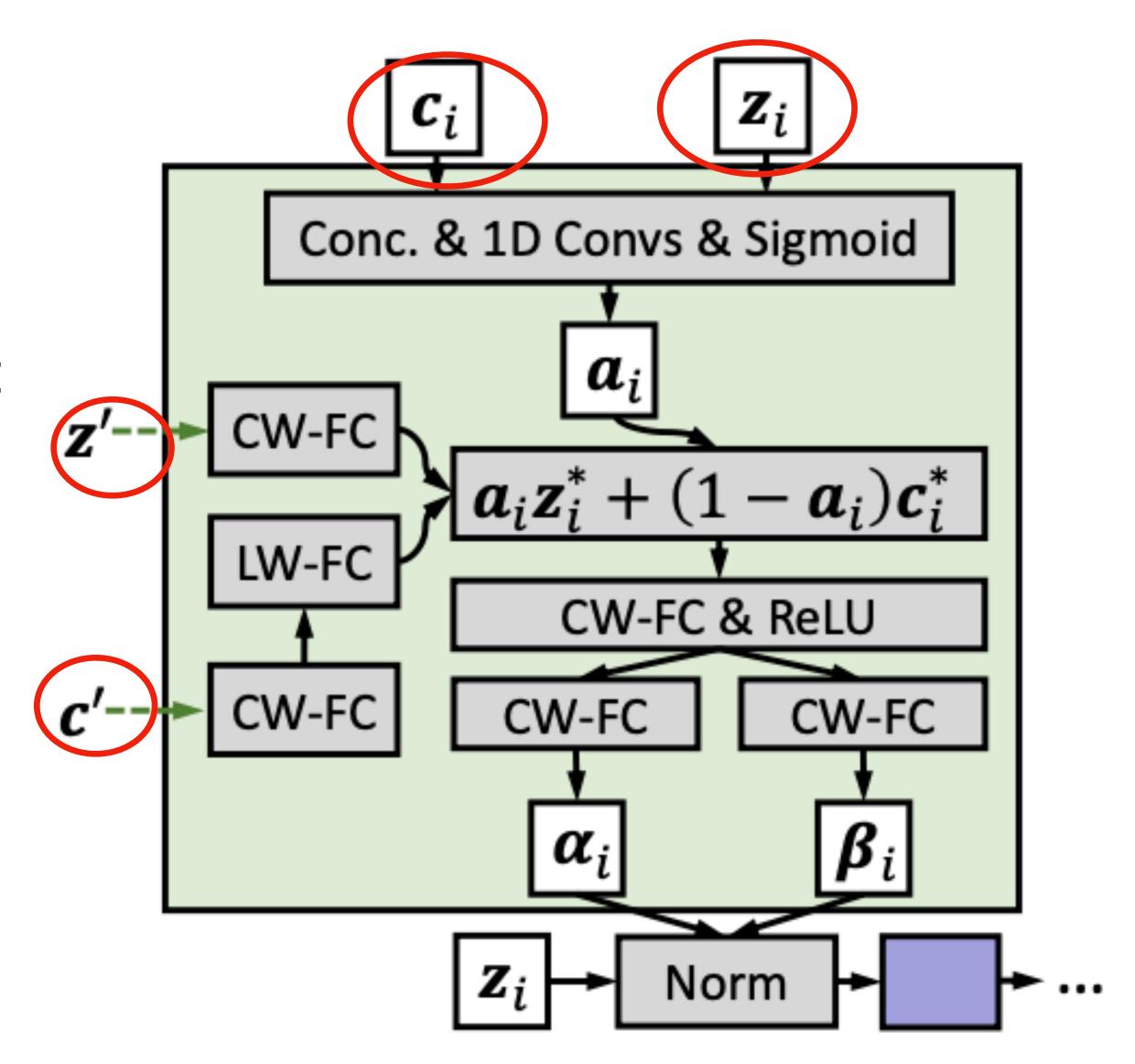
Chen, J., Zheng, X., et al. Electrocardio panorama: Synthesizing new ECG views with self-supervision. In IJCAI, 2021.

Method

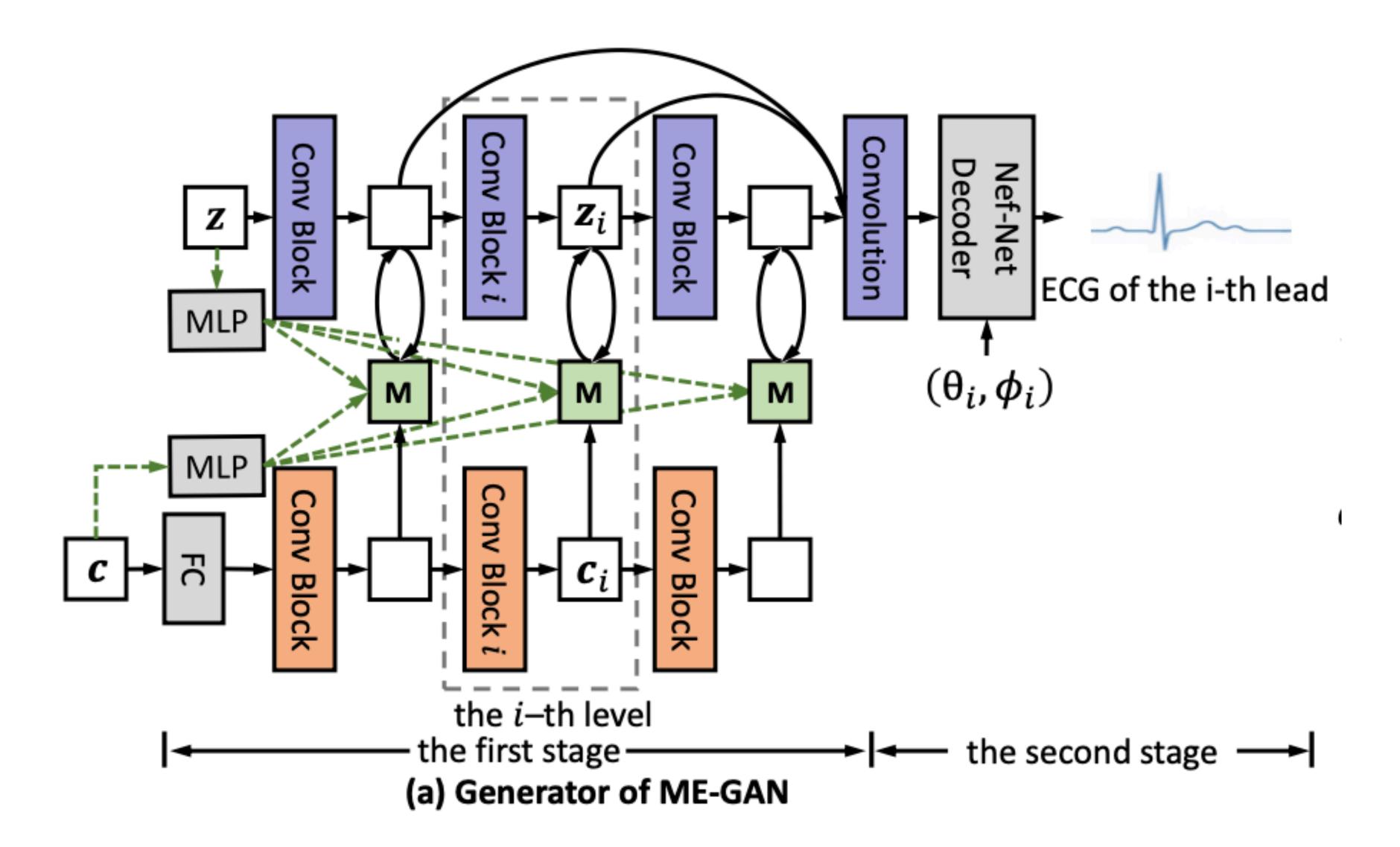
Mixup Normalization Layer

 Synthesize fine-grained waveformed conditioned on heart diseases

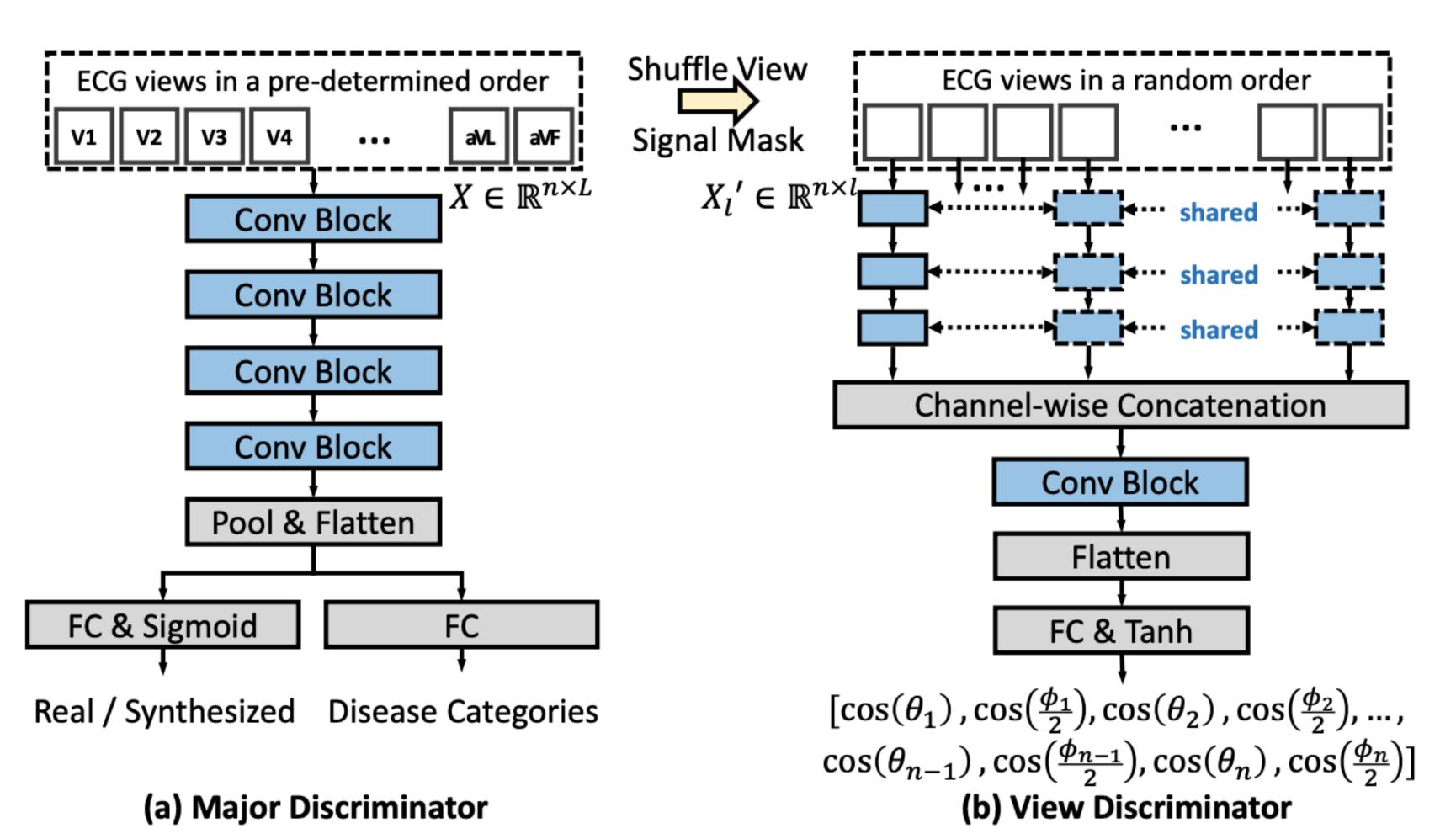
$$\tilde{z} = \alpha \odot \frac{z_i - u}{\sigma} + \beta_i$$



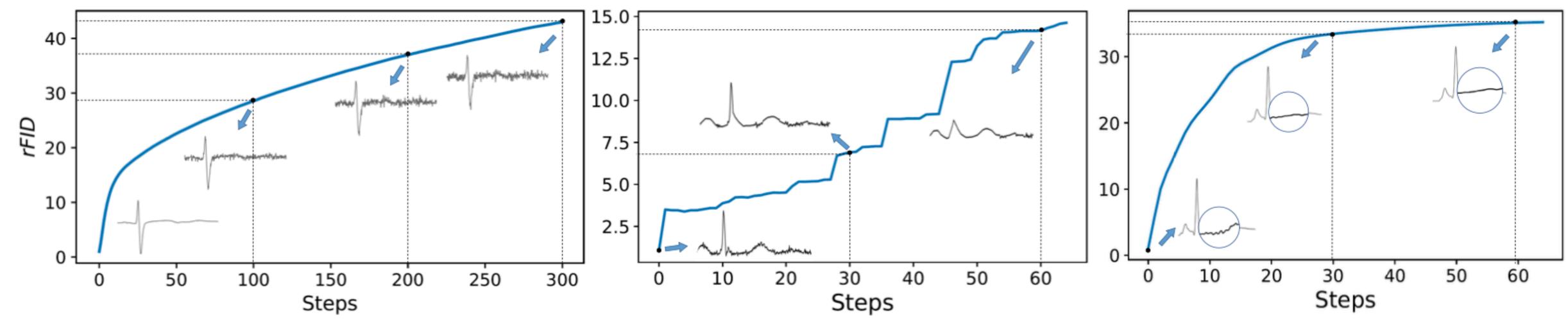
Generator



Discriminator



rFID



(a) rFID changes with continuously added noises. (b) rFID changes with ECG signals replaced by line segments. (c) rFID changes with ECG signal blurring. Figure 5. Illustrating rFID changes during a process in which noise is continually added onto ECG signals. The "V2" view of an ECG signal is presented for visually showing the signal quality.

Result

Table 1. Synthesis performances of various GAN models. The lower *rFID* score is the better, and the accuracy score of 1-NN classifier (1NNC) is better if it is closer to 0.5. The best performances are marked in **bold**.

Methods	Tianchi w/ diseases								Tianchi w/o diseases PTB w/o diseases			
	overall		LAD		RBBB		RAD		overall		overall	
	1NNC	rFID	1NNC	rFID	1NNC	rFID	1NNC	rFID	1NNC	rFID	1NNC	rFID
WGAN-GP	0.722	7.534	0.697	5.359	0.683	3.509	0.676	6.892	0.640	5.494	0.656	42.046
ACGAN	0.699	15.944	0.668	7.464	0.672	10.942	0.684	13.144	_	_	_	_
LSGAN	0.870	13.427	0.795	6.151	0.676	8.984	0.746	11.367	0.775	17.341	0.673	43.481
CGAN	0.757	12.479	0.585	8.495	0.607	5.489	0.594	10.849	_	_	_	_
SMDCGAN	0.998	38.619	0.934	23.985	0.823	18.370	0.924	31.408	0.617	2.618	0.623	20.182
BC-GAN	0.832	12.701	0.723	8.299	0.617	5.975	0.634	10.685	0.983	42.545	0.997	158.698
CBL-GAN	0.826	6.990	0.673	5.322	0.739	3.471	0.694	5.573	0.611	6.173	0.713	65.750
ME-GAN (Ours)	0.643	3.722	0.567	2.662	0.663	1.491	0.712	3.433	0.582	2.343	0.618	15.282

Result

Table 2. Classification performances of 1D ResNet-34 trained on augmented training sets.

Method	Diseases (PR-AUC)						
	LAD	RBBB	RAD	Mean			
1D ResNet-34 (baseline)	0.925	0.801	0.911	0.879			
WGAN-GP	0.916	0.826 0.817	0.922	0.889			
ACGAN	0.912	0.817	0.913	0.881			
LSGAN	0.918	0.858	0.910	0.895			
CGAN	0.906	0.867	0.904	0.892			
SMDCGAN	1	0.832					
BC-GAN	0.896	0.820	0.898	0.871			
CBL-GAN	0.910	0.820 0.857	0.896	0.888			
ME-GAN (Ours)	0.927	0.870	0.908	0.902			

Thank you for listening