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Synchronous and Asynchronous in Distributed Learning
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Large sample number/model dimension
— use of multiple processors

synchronous: all finish comp & comm,
next iteration.

» GD: Tyl = T — %Z?:l sz(.’l?k)
inefficient, bottleneck: slowest worker.

asynchronous: some finish comp & comm,
next iteration, cause delay.

> IAG: zpp1 = 2 — L 300, VI (24_r).
efficient, do not wait slowest.



Literature Review, Issues, and ldea

» asynchronous, non-diminishing step-size:
~ rely on an upper bound 7 of all delays.
— lIssues: 7 usually unknown (hard to implement) or large (small step-size,
slow convergence)

» ldea: step-sizes should rely on actual delays. Poses two questions:

1. can we measure actual delay? (yes, by difference of iteration index)
2. large gap between delay bound and actual delay? (yes)



Gap between delay bound and actual delay

Tr: maximal information delay at iteration k.
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Figure: Real-world delay distribution (8 workers)

most delays are much smaller than maximal delay, good to use actual delay



Main part: delay-adaptive step-sizes for two asynchronous methods



Problem and Algorithm
min  f(x) + R(z)
T N~ N——
smooth loss  convex regularizer

e large sample number: f(z):= 13" | fi(2)

= PIAG: zj41 = prox,, p(zy — £ 370, Vfi(xk*ﬁi))'
proxp(z) = arg min, R(y) + 3y - ol
1

e large variable dimension: z = (z!,...,2™), R(z) = Y.~ R(z").

— Async-BCD: x;iu = Prox., pix (£ — Vi, f(Tr-r,))

number of blocks and workers can be different.



Convergence Analysis

k—1
step-size principal: v, < max(0,7" — Z Ve)-
t=k—7p
. k—1
> PIAG: O(Zk —), proximal-PL: O(e™ Zi=o0 ),
t=0 Tt

»> Async-BCD: O<Zfol t).

. k—1
larger step-size integral >, 74 — faster convergence

Adaptive 1: for « € (0,1], Adaptive 2:
k—1 D e S e g Sy e Tt
T = max{'y’ - Zt:lﬂf'rk Ve 0} R {0, otherwise.

satisfy (1), easy to implement, bounded delay — sublinear and linear



Comparison with Fixed Step-size
bounded delay (7 < 1), sota fixed:
> worst case:

Adaptive 1: 7 7¢ > k- 200 Adaptive 20 Y50y > k-
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Experiment: Logistic Regression

> problem: min % Zi\; (log(l +ebilal®)y 4 %HzHQ) + Az
» for both algorithms, 8 workers, 10-core machine, 3 datasets, MPl4py.
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Figure: Convergence of PIAG
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—— Adaptive 1
—— Adaptive 2
Fixed (Sun)

Fixed (Davis)

Logistic Regression

1000
iteration number

(a) RCV1

03
10
'™
]
— Adaptive 1 = s —— Adaptive 1
. —— Adaptive 2 ° —— Adaptive 2
S - Fixed (Sun) £ - Fixed (Sun)
= -~ Fixed (Davis) S0 N\ - Fixed (Davis)
B om 3
0
ois
2000 1000 2000 3000 1000 20

iteration number

(b) MNIST

Figure: Convergence of Async-BCD

iteration number

(c) CIFAR100

10



Conclusion

» delay-adaptive step-size

~ is implementable (delay-tracking is easy)
— can significantly accelerate algorithms (validated by theory and

experiment).

» the idea of delay-adaptive parameter selection is general, applicable to other
asynchronous methods
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