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Synchronous and Asynchronous in Distributed Learning

Large sample number/model dimension
→ use of multiple processors

synchronous: all finish comp & comm,
next iteration.

▶ GD: xk+1 = xk − γ
n

∑n
i=1∇f i(xk).

inefficient, bottleneck: slowest worker.

asynchronous: some finish comp & comm,
next iteration, cause delay.

▶ IAG: xk+1 = xk − γ
n

∑n
i=1∇f i(xk−τ ik

).

efficient, do not wait slowest.
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Literature Review, Issues, and Idea

▶ asynchronous, non-diminishing step-size:

– rely on an upper bound τ of all delays.
– Issues: τ usually unknown (hard to implement) or large (small step-size,
slow convergence)

▶ Idea: step-sizes should rely on actual delays. Poses two questions:

1. can we measure actual delay? (yes, by difference of iteration index)
2. large gap between delay bound and actual delay? (yes)
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Gap between delay bound and actual delay

τk: maximal information delay at iteration k.
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Figure: Real-world delay distribution (8 workers)

most delays are much smaller than maximal delay, good to use actual delay
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Main part: delay-adaptive step-sizes for two asynchronous methods
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Problem and Algorithm

min
x

f(x)︸︷︷︸
smooth loss

+ R(x)︸ ︷︷ ︸
convex regularizer

• large sample number: f(x) := 1
n

∑n
i=1 f

i(x)

– PIAG: xk+1 = proxγkR
(xk − γk

n

∑n
i=1 ∇fi(xk−τi

k
)).

proxR(x) = arg miny R(y) + 1
2∥y − x∥2

• large variable dimension: x = (x1, . . . , xm), R(x) =
∑m

i=1 R
i(xi).

– Async-BCD: xik
k+1 = proxγkR

ik (x
ik
k − γk∇ikf(xk−τk ))

number of blocks and workers can be different.
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Convergence Analysis

step-size principal: γk ≤ max(0, γ′ −
k−1∑

t=k−τk

γt). (1)

▶ PIAG: O( 1∑k−1
t=0 γt

), proximal-PL: O(e−
∑k−1

t=0 γt).

▶ Async-BCD: O( 1∑k−1
t=0 γt

).

larger step-size integral
∑k−1

t=0 γt → faster convergence

Adaptive 1: for α ∈ (0, 1],

γk = αmax{γ′ −
∑k−1

t=k−τk
γt, 0}

Adaptive 2:

γk =

{
γ′

τk+1
, γ′

τk+1
≤ γ′ −

∑k−1
t=k−τk

γt,

0, otherwise.

satisfy (1), easy to implement, bounded delay → sublinear and linear
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Comparison with Fixed Step-size

bounded delay (τk ≤ τ), sota fixed: γ′

τ+1 .

▶ worst case:

Adaptive 1:
∑k−1

t=0 γt ≥ k · αγ′

τ+1 Adaptive 2:
∑k−1

t=0 γt ≥ k · τγ′

(τ+1)2

▶ on delay models:
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Experiment: Logistic Regression

▶ problem: min 1
N

∑N
i=1

(
log(1 + e−bi(a

T
i x)) + λ2

2 ∥x∥2
)
+ λ1∥x∥1

▶ for both algorithms, 8 workers, 10-core machine, 3 datasets, MPI4py.
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Figure: Convergence of PIAG
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Experiment: Logistic Regression
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Figure: Convergence of Async-BCD
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Conclusion

▶ delay-adaptive step-size

– is implementable (delay-tracking is easy)
– can significantly accelerate algorithms (validated by theory and
experiment).

▶ the idea of delay-adaptive parameter selection is general, applicable to other
asynchronous methods
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