
Delay-adaptive Step-sizes for Asynchronous Learning

Xuyang Wu1, Sindri Magnusson2, Hamid Reza Feyzmahdavian3,
Mikael Johansson1

1KTH Royal Institute of Technology
2Stockholm University

3ABB Corporate Research

ICML 2022

Synchronous and Asynchronous in Distributed Learning

Large sample number/model dimension
→ use of multiple processors

synchronous: all finish comp & comm,
next iteration.

▶ GD: xk+1 = xk − γ
n

∑n
i=1∇f i(xk).

inefficient, bottleneck: slowest worker.

asynchronous: some finish comp & comm,
next iteration, cause delay.

▶ IAG: xk+1 = xk − γ
n

∑n
i=1∇f i(xk−τ ik

).

efficient, do not wait slowest.

2

Literature Review, Issues, and Idea

▶ asynchronous, non-diminishing step-size:

– rely on an upper bound τ of all delays.
– Issues: τ usually unknown (hard to implement) or large (small step-size,
slow convergence)

▶ Idea: step-sizes should rely on actual delays. Poses two questions:

1. can we measure actual delay? (yes, by difference of iteration index)
2. large gap between delay bound and actual delay? (yes)

3

Gap between delay bound and actual delay

τk: maximal information delay at iteration k.

0 10 19
0

0.1

0.2

0 10 20 27
0

0.1

0.2

0 10 20 28
0

0.1

0.2

Figure: Real-world delay distribution (8 workers)

most delays are much smaller than maximal delay, good to use actual delay

4

Main part: delay-adaptive step-sizes for two asynchronous methods

5

Problem and Algorithm

min
x

f(x)︸︷︷︸
smooth loss

+ R(x)︸ ︷︷ ︸
convex regularizer

• large sample number: f(x) := 1
n

∑n
i=1 f

i(x)

– PIAG: xk+1 = proxγkR
(xk − γk

n

∑n
i=1 ∇fi(xk−τi

k
)).

proxR(x) = arg miny R(y) + 1
2∥y − x∥2

• large variable dimension: x = (x1, . . . , xm), R(x) =
∑m

i=1 R
i(xi).

– Async-BCD: xik
k+1 = proxγkR

ik (x
ik
k − γk∇ikf(xk−τk))

number of blocks and workers can be different.

6

Convergence Analysis

step-size principal: γk ≤ max(0, γ′ −
k−1∑

t=k−τk

γt). (1)

▶ PIAG: O(1∑k−1
t=0 γt

), proximal-PL: O(e−
∑k−1

t=0 γt).

▶ Async-BCD: O(1∑k−1
t=0 γt

).

larger step-size integral
∑k−1

t=0 γt → faster convergence

Adaptive 1: for α ∈ (0, 1],

γk = αmax{γ′ −
∑k−1

t=k−τk
γt, 0}

Adaptive 2:

γk =

{
γ′

τk+1
, γ′

τk+1
≤ γ′ −

∑k−1
t=k−τk

γt,

0, otherwise.

satisfy (1), easy to implement, bounded delay → sublinear and linear

7

Comparison with Fixed Step-size

bounded delay (τk ≤ τ), sota fixed: γ′

τ+1 .

▶ worst case:

Adaptive 1:
∑k−1

t=0 γt ≥ k · αγ′

τ+1 Adaptive 2:
∑k−1

t=0 γt ≥ k · τγ′

(τ+1)2

▶ on delay models:

8

Experiment: Logistic Regression

▶ problem: min 1
N

∑N
i=1

(
log(1 + e−bi(a

T
i x)) + λ2

2 ∥x∥2
)
+ λ1∥x∥1

▶ for both algorithms, 8 workers, 10-core machine, 3 datasets, MPI4py.

0 500 1000

iteration number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ob
je

ct
iv

e
va

lu
e

Adaptive 1

Adaptive 2

Fixed (Sun, Deng)

(a) RCV1

0 500 1000 1500

iteration number

0.15

0.20

0.25

0.30

0.35

ob
je

ct
iv

e
va

lu
e

Adaptive 1

Adaptive 2

Fixed (Sun, Deng)

(b) MNIST

0 500 1000

iteration number

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
va

lu
e

Adaptive 1

Adaptive 2

Fixed (Sun, Deng)

(c) CIFAR100

Figure: Convergence of PIAG

9

Experiment: Logistic Regression

0 1000 2000

iteration number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

ob
je

ct
iv

e
va

lu
e

Adaptive 1

Adaptive 2

Fixed (Sun)

Fixed (Davis)

(a) RCV1

0 1000 2000 3000

iteration number

0.15

0.20

0.25

0.30

0.35

ob
je

ct
iv

e
va

lu
e

Adaptive 1

Adaptive 2

Fixed (Sun)

Fixed (Davis)

(b) MNIST

0 1000 2000

iteration number

0.2

0.4

0.6

0.8

1.0

ob
je

ct
iv

e
va

lu
e

Adaptive 1

Adaptive 2

Fixed (Sun)

Fixed (Davis)

(c) CIFAR100

Figure: Convergence of Async-BCD

10

Conclusion

▶ delay-adaptive step-size

– is implementable (delay-tracking is easy)
– can significantly accelerate algorithms (validated by theory and
experiment).

▶ the idea of delay-adaptive parameter selection is general, applicable to other
asynchronous methods

11

