Delay-adaptive Step-sizes for Asynchronous Learning

Xuyang Wul, Sindri Magnusson?, Hamid Reza Feyzmahdavian3,

Mikael Johansson?!
LKTH Royal Institute of Technology

2Stockholm University
3ABB Corporate Research

ICML 2022

Synchronous and Asynchronous in Distributed Learning

~

worker 1

master
‘!

/|

~

worker n

Large sample number/model dimension
— use of multiple processors

synchronous: all finish comp & comm,
next iteration.

» GD: Tyl = T — %Z?:l sz(.’l?k)
inefficient, bottleneck: slowest worker.

asynchronous: some finish comp & comm,
next iteration, cause delay.

> IAG: zpp1 = 2 — L 300, VI (24_r).
efficient, do not wait slowest.

Literature Review, Issues, and ldea

» asynchronous, non-diminishing step-size:
~ rely on an upper bound 7 of all delays.
— lIssues: 7 usually unknown (hard to implement) or large (small step-size,
slow convergence)

» ldea: step-sizes should rely on actual delays. Poses two questions:

1. can we measure actual delay? (yes, by difference of iteration index)
2. large gap between delay bound and actual delay? (yes)

Gap between delay bound and actual delay

Tr: maximal information delay at iteration k.

0.2
UJ% _ J
0
19

0 10
7 (RCV1)

2 27

o

frequency

o o

o =K
o

10
7. (MNIST)

0.
U.% . J
0
20 28

0 10
7. (CIFAR100)

Figure: Real-world delay distribution (8 workers)

most delays are much smaller than maximal delay, good to use actual delay

Main part: delay-adaptive step-sizes for two asynchronous methods

Problem and Algorithm
min f(x) + R(z)
T N~ N——
smooth loss convex regularizer

e large sample number: f(z):= 13" | fi(2)

= PIAG: zj41 = prox,, p(zy — £ 370, Vfi(xk*ﬁi))'
proxp(z) = arg min, R(y) + 3y - ol
1

e large variable dimension: z = (z!,...,2™), R(z) = Y.~ R(z").

— Async-BCD: x;iu = Prox., pix (£ — Vi, f(Tr-r,))

number of blocks and workers can be different.

Convergence Analysis

k—1
step-size principal: v, < max(0,7" — Z Ve)-
t=k—7p
. k—1
> PIAG: O(Zk —), proximal-PL: O(e™ Zi=o0),
t=0 Tt

»> Async-BCD: O<Zfol t).

. k—1
larger step-size integral >, 74 — faster convergence

Adaptive 1: for « € (0,1], Adaptive 2:
k—1 D e S e g Sy e Tt
T = max{'y’ - Zt:lﬂf'rk Ve 0} R {0, otherwise.

satisfy (1), easy to implement, bounded delay — sublinear and linear

Comparison with Fixed Step-size
bounded delay (7 < 1), sota fixed:
> worst case:

Adaptive 1: 7 7¢ > k- 200 Adaptive 20 Y50y > k-

e
T+1°

(T+1)2
» on delay models:
delay delay delay
T T T
& & &
0 0 0
k k k
step-size integral step-size integral step-size integral
Adaptive 1
= Adaptive 2 = =
7 |7 == Fixed .1 - i
0 0 -- (T mmm ===
k k k
(a) constant delay (b) random delay

(c) burst delay

Experiment: Logistic Regression

> problem: min % Zi\; (log(l +ebilal®)y 4 %HzHQ) + Az
» for both algorithms, 8 workers, 10-core machine, 3 datasets, MPl4py.

N —— Adaptive 1 (NS —— Adaptive 1 —— Adaptive 1
o \ S —— Adaptive 2 S — Adaptive 2 S —— Adaptive 2
. Fixed (Sun, Deng) Fixed (Sun, Deng) ced (Sun, Deng)
g
£
g
0
2
o
02
500 1000 0 500 1000 1500 0 500 1000
iteration number iteration number iteration number
(a) RCV1 (b) MNIST (c) CIFAR100

Figure: Convergence of PIAG

ive value

Experiment:

—— Adaptive 1
—— Adaptive 2
Fixed (Sun)

Fixed (Davis)

Logistic Regression

1000
iteration number

(a) RCV1

03
10
'™
]
— Adaptive 1 = s —— Adaptive 1
. —— Adaptive 2 ° —— Adaptive 2
S - Fixed (Sun) £ - Fixed (Sun)
= -~ Fixed (Davis) S0 N\ - Fixed (Davis)
B om 3
0
ois
2000 1000 2000 3000 1000 20

iteration number

(b) MNIST

Figure: Convergence of Async-BCD

iteration number

(c) CIFAR100

10

Conclusion

» delay-adaptive step-size

~ is implementable (delay-tracking is easy)
— can significantly accelerate algorithms (validated by theory and

experiment).

» the idea of delay-adaptive parameter selection is general, applicable to other
asynchronous methods

11

