Introduction	Main Results	Numerical Test	
00000	00000	00	

On the Finite-Time Performance of the Knowledge Gradient Algorithm

Yanwen Li¹ & Siyang Gao^{1,2}

 Department of Advanced Design and Systems Engineering, City University of Hong Kong
 School of Data Science, City University of Hong Kong

The 39th International Conference on Machine Learning (ICML2022)

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへ⊙

Yanwen Li & Siyang Gao

Introduction			
00000	00000	00	0

Fixed-Budget Best Arm Identification (BAI) Problem

- **Parameters available to the agent:** the number of arms *k* and the number of rounds *n*.
- **Parameters unknown to the agent:** the mean rewards of the underlying distributions $\mathcal{D}_1, \ldots, \mathcal{D}_k$ corresponding to the arms $\{1, \ldots, k\}$. In this research, we assume that the arm *b* with the largest mean reward is **unique**.
- In each round $t = 1, \ldots, n$,
 - (1) The agent pulls an arm $l_t \in \{1, \ldots, k\}$.
 - (2) A noisy reward $X_{l_t,t}$ is drawn from \mathcal{D}_{l_t} (independently from the past given l_t).

After the *n* rounds, the agent recommends an arm $J_n \in \{1, \ldots, k\}$.

• Goal: Identify the best arm *b*, i.e., the arm with the largest mean reward.

Yanwen Li & Siyang Gao

Introduction		
00000		

Methods for Solving Fixed-Budget BAI:

- Knowledge Gradient (**KG**): Gupta & Miescke (1996); Frazier et al. (2008)
- Expected Improvement (EI): Jones et al. (1998); Ryzhov (2016)
- Optimal Computing Budget Allocation (OCBA): Chen et al. (2000); Gao & Shi (2015); Li & Gao (2022)
- Upper Confidence Bound Exploration (**UCB-E**): Audibert et al. (2010)
- Successive Rejects (SR): Audibert et al. (2010); Bubeck et al. (2013)
- Gap-Based Exploration (GapE): Gabillon et al. (2011)
- Top-Two Thompson Sampling (**TTTS**): Russo (2016); Shang et al. (2019)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

•

Yanwen Li & Siyang Gao

Introduction			
00000	00000	00	0

Research on Knowledge Gradient:

- Excellent empirical performance: Frazier et al. (2008, 2009); Frazier (2009); Powell (2011); Wang & Powell (2018);
- Wide application range:
 - drug discovery (Negoescu et al., 2011)
 - urban delivery (Huang et al., 2019)
 - risk quantification (Cakmak et al., 2020)
 - experimental design in material science (Chen et al., 2015) and biotechnology (Li et al., 2018)
 -

• Extension to other types of BAI problems:

- parallel BAI (Wu & Frazier, 2016)
- contextual bandits (Ding et al., 2021)
-
- Few theoretical results: Frazier et al. (2008); Ryzhov (2016); Wang & Powell (2018)

Yanwen Li & Siyang Gao

Introduction 000●0		Conclusions O

Summary of the Talk

- We study the finite-time performance of the KG algorithm under independent and normally distributed rewards with known variances.
- We derive the **upper and lower bounds** of the **proportions of rounds** allocated to pull the arms. With these bounds, existing asymptotic results become simple corollaries.
- We derive the **upper and lower bounds** of the KG algorithm on the **commonly used performance measures** for best arm identification and multi-armed bandits.

ヘロト ヘロト ヘビト ヘビト

3

Introduction 0000●		

Algorithm Description:

Algorithm 1 Knowledge Gradient

Input: number of arms *k*, number of rounds *n*. Initialize the knowledge set $S_1 = \left\{ \left(\theta_{i,1}, \lambda_{i,1}^2\right) \middle| i = 1, \dots, k \right\}$ and set $N_{1,1} = \cdots = N_{k,1} = 0$. for t = 1 to n - 1 do Compute $I_t = \arg \max_i v_{i,t}^{\text{KG}}$. Observe a reward $X_{l_t,t} \sim \mathcal{N}(\mu_{l_t}, \sigma_{l_t}^2)$. Update $\theta_{i,t+1}$ and $\lambda_{i,t+1}^2$, and update the knowledge set S_{t+1} . $N_{l_{t},t+1} = N_{l_{t},t} + 1$, $N_{i,t+1} = N_{i,t}$ for $\forall i \neq l_{t}$. $t \leftarrow t + 1$. end for **Output:** $J_n = \arg \max_i \theta_{i,n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Main Results ●0000	

Proposition

Under the KG algorithm, $\exists T > T_0$, it holds with a probability of at least $\left[1 - q\left(\frac{3}{4}t\right)\right]^k$ that for $\forall i \neq b$, $\forall t > T$,

Λ1

$$\underline{\rho}_{i,b,t} \leq \frac{N_{i,t}}{N_{b,t}} \leq \overline{\rho}_{i,b,t}$$
where $q(s) = 4\sigma_{\max}k^{\frac{3}{8}}s^{-\frac{1}{8}}\exp\left\{-\frac{s^{\frac{1}{4}}}{8\sigma_{\max}^2k^{\frac{3}{4}}}\right\}$.

For
$$\forall i \neq b$$
, $\lim_{t \to \infty} \underline{\rho}_{i,b,t} = \lim_{t \to \infty} \overline{\rho}_{i,b,t} = \frac{\sigma_i (\mu_b - \max_{j \neq b} \mu_j)}{\sigma_b (\mu_b - \mu_i)}$.

イロト イヨト イヨト イヨト

3

Yanwen Li & Siyang Gao

Main Results 0●000	

For
$$\forall i, \alpha_{i,t} = \frac{N_{i,t}}{t} = \frac{N_{i,t}/N_{b,t}}{\sum_{j=1}^{k} N_{j,t}/N_{b,t}}.$$

Under the KG algorithm, $\exists T > T_0$, it holds with a probability of at least $\left[1 - q\left(\frac{3}{4}t\right)\right]^k$ that for $\forall t > T$,

$$\begin{aligned} & \frac{1}{1 + \sum_{i \neq b} \overline{\rho}_{i,b,t}} \leq \alpha_{b,t} \leq \frac{1}{1 + \sum_{i \neq b} \underline{\rho}_{i,b,t}}, \\ & \frac{\underline{\rho}_{i,b,t}}{1 + \sum_{j \neq b} \overline{\rho}_{j,b,t}} \leq \alpha_{i,t} \leq \frac{\overline{\rho}_{i,b,t}}{1 + \sum_{j \neq b} \underline{\rho}_{j,b,t}}, \ \forall i \neq b, \end{aligned}$$

イロト 不得 トイヨト イヨト 二日

where $q(\cdot)$, $\underline{\rho}_{i,b,t}$, and $\overline{\rho}_{i,b,t}$ are from the Proposition.

Yanwen Li & Siyang Gao

Main Results	
00000	

Under the KG algorithm, $\exists T > T_0$, $\forall t > T$, the probability of error $e_t = \mathbb{P}(J_t \neq b)$ is upper-bounded by

$$\begin{split} & \left. \frac{\sigma_b \sqrt{2 \left(1 + \sum_{i \neq b} \overline{\rho}_{i,b,t}\right)}}{\delta_{\min} \sqrt{\pi t}} \exp\left\{-\frac{\delta_{\min}^2}{8\sigma_b^2 \left(1 + \sum_{i \neq b} \overline{\rho}_{i,b,t}\right)}t\right\} \\ & + \frac{\sqrt{2}k^{\frac{3}{8}}\sigma_b}{\sqrt{\pi}\delta_{\min}t^{\frac{3}{8}}} \left[1 - \left[1 - q\left(\frac{3}{4}t\right)\right]^k\right] \exp\left\{-\frac{\delta_{\min}^2}{8\sigma_b^2 k^{\frac{3}{4}}}t^{\frac{3}{4}}\right\} \\ & + \sum_{i \neq b} \left\{\frac{\sigma_i \sqrt{\left(1 + \sum_{i \neq b} \overline{\rho}_{i,b,t}\right)}}{\left(\mu_b - \mu_i - \frac{\delta_{\min}}{2}\right)\sqrt{2\pi}\underline{\rho}_{i,b,t}}}\exp\left\{-\frac{\left(\mu_b - \mu_i - \frac{\delta_{\min}}{2}\right)^2\underline{\rho}_{i,b,t}}{2\sigma_i^2 \left(1 + \sum_{i \neq b} \overline{\rho}_{i,b,t}\right)}t\right\} \\ & + \frac{k^{\frac{3}{8}}\sigma_i \left[1 - \left[1 - q\left(\frac{3}{4}t\right)\right]^k\right]}{\sqrt{2\pi} \left(\mu_b - \mu_i - \frac{\delta_{\min}}{2}\right)^2}t^{\frac{3}{4}}\right\}, \end{split}$$

where $q(\cdot)$, $\underline{\rho}_{i,b,t}$, and $\overline{\rho}_{i,b,t}$ are from the Proposition.

Yanwen Li & Siyang Gao

Main Results	
00000	

Under the KG algorithm, $\exists T > T_0$, $\forall t > T$, the probability of error $e_t = \mathbb{P}(J_t \neq b)$ is **lower-bounded** by

$$\frac{\left[1-q\left(\frac{3}{4}t\right)\right]^{2k}}{2\pi}\min_{j\neq b}\left\{\frac{\frac{\delta_{\min}}{2\sigma_{j}}\sqrt{\frac{\rho_{j,b,t}}{1+\sum_{i\neq b}\overline{\rho}_{i,b,t}}}}{1+\frac{\delta_{\min}^{2}\overline{\rho}_{j,b,t}}{4\sigma_{j}^{2}\left(1+\sum_{i\neq b}\rho_{i,b,t}\right)}}\frac{\frac{\left(\mu_{b}-\mu_{j}-\frac{\delta_{\min}}{2}\right)t}{\sigma_{b}\sqrt{1+\sum_{i\neq b}\overline{\rho}_{i,b,t}}}}{1+\frac{\left(\mu_{b}-\mu_{j}-\frac{\delta_{\min}}{2}\right)^{2}t}{\sigma_{b}^{2}\left(1+\sum_{i\neq b}\rho_{i,b,t}\right)}}}\exp\left\{-\frac{\delta_{\min}^{2}\overline{\rho}_{j,b,t}}{8\sigma_{j}^{2}\left(1+\sum_{i\neq b}\rho_{i,b,t}\right)}t\right\}$$
$$\cdot\exp\left\{-\frac{\left(\mu_{b}-\mu_{j}-\frac{\delta_{\min}}{2}\right)^{2}}{2\sigma_{b}^{2}\left(1+\sum_{i\neq b}\rho_{i,b,t}\right)}t\right\}$$

where $q(\cdot)$, $\underline{\rho}_{i,b,t}$, and $\overline{\rho}_{i,b,t}$ are from the Proposition.

For $\forall t$, the simple regret $r_t = \mathbb{E} \left[\mu_b - \mu_{J_t} \right]$ satisfies that

$$\delta_{\min} \boldsymbol{e}_t \leq \boldsymbol{r}_t \leq \delta_{\max} \boldsymbol{e}_t.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Yanwen Li & Siyang Gao

Main Results 0000●	

Under the KG algorithm, the following statements hold:

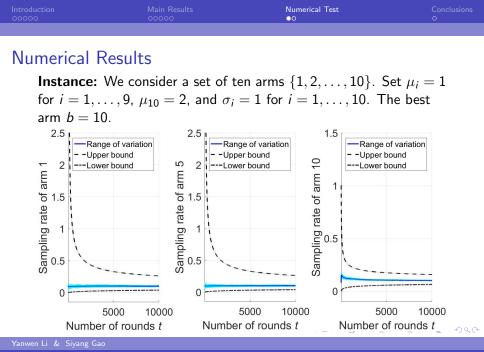
• $\exists T > T_0$, after round t > T, the cumulative regret $R_t = t\mu_b - \sum_{s=1}^t \mathbb{E}[\mu_{l_t}]$ is upper-bounded by

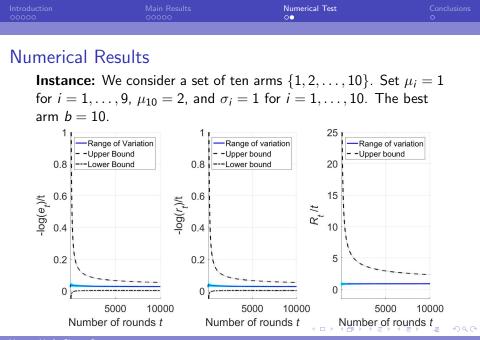
$$\frac{\sum_{i\neq b} (\mu_b - \mu_i) \overline{\rho}_{i,b,t}}{1 + \sum_{i\neq b} \underline{\rho}_{i,b,t}} t + k \sum_{i\neq b} (\mu_b - \mu_i) q \left(\frac{3}{4}t\right) t.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

•
$$\lim_{t\to\infty} \frac{R_t}{t} = \frac{\sum_{i\neq b} \sigma_i}{\frac{\sigma_b}{\mu_b - \max_{i\neq b} \mu_j} + \sum_{i\neq b} \frac{\sigma_i}{\mu_b - \mu_i}}$$
.
where $q(\cdot)$, $\underline{\rho}_{i,b,t}$, and $\overline{\rho}_{i,b,t}$ are from the Proposition.

Yanwen Li & Siyang Gao





Yanwen Li & Siyang Gao

	Conclusions

Conclusions and Discussions

- We consider the measures of the **probability of error** and **simple regret** in the BAI problem, and the measure of **cumulative regret** in the MAB problem, and derive **upper and lower bounds** of them.
- Our analysis can serve as the ground for **future research on the KG algorithm and BAI**.
- The analysis in this research might be extended to study the performance of other KG-type and improvement-based algorithms.
- The validity of the bounds highly depends on quantity *T* which is **difficult to compute**. Therefore, it is an important future research direction to study **how to quantify** *T*.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

	•

Thanks for listening!

メロト メロト メヨト メヨト

= 990

Yanwen Li & Siyang Gao