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Logistic Regression

• Input dataset:

log𝑝 𝑦|𝑝, 𝑥 = 𝑦 ⋅ log 1 + 𝑒−𝑝⋅𝑥 + (1 − 𝑦) ⋅ log 1 + 𝑒𝑝⋅𝑥

ℒ(𝑥) = ∑
𝑖=1

𝑛

log𝑝 𝑦𝑖|𝑝𝑖, 𝑥

𝐷 = 𝑝1, 𝑦1 , ⋯ , 𝑝𝑛, 𝑦𝑛

𝑝𝑖 ∈ ℝ𝑑, 𝑦𝑖 ∈ 1,0

• Loss function: the log likelihood of the data



Motivation

While efficient solvers for the optimization 
problem exist, huge amounts of data lead to 
high costs due to: 

• Huge memory consumption.

• Infeasible training times (e.g., when using 
hyperparameter tuning).

• High communication times.



Main Technique: Coresets

𝑓 𝑓

Approximately same output, but with:
- Less time
- Less memory
- Less energy

Coreset
Data



Contribution I: 
No Coreset for the General Case

• We provide example synthetic datasets 𝑫 for which there 

is no coreset of size smaller than |𝑫|.

Following this lower bound, the only hope remaining for 
constructing coresets resides in adding additional assumptions.



Contribution II: Coreset for regularized 
logistic regression

• We add a standard ℓ2 regularization.

• We then prove that, with probability at least 
1 − 𝛿, a small coreset 𝑄 exists for any normalized input set 𝑃 ⊆ ℝ𝑑. 
Coreset size 

• A coreset construction algorithm that runs in near linear expected 
time.

Approximation 

error
depends linearly on the 

regularization parameter 

and logarithmically on 𝑃

Failure probability



Contribution II: Coreset for regularized 
logistic regression

Huge 

Training data

Coreset 
construction 
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Small subset of 
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Logistic 
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The coreset is guaranteed to approximate:

- Loss function value.

- Marginal likelihood.

- Log likelihood ratio.



Contribution III: Generalization to 
additional loss functions

• We show that our coreset construction scheme holds for any 
other loss function 𝐥𝐨𝐬𝐬 𝐩, 𝐱 = 𝒇 𝒑 ⋅ 𝒙 which satisfies:

𝑓 𝑝 𝑥 +
𝑔( 𝑥 )

𝑘
≤ 𝑏𝑝 𝑓 − 𝑝 𝑥 +

𝑔( 𝑥 )

𝑘

• For example, the non-convex sigmoid loss function:



Experimental Results

Empirically, a coreset 

of size < 1% can 

produce a small error 

of 𝜀 = 0.001.



Future Work

• In future work we hope to extend the work to 
handle an even wider range of loss functions.

• We also hope to reduce the dependency of 
the coreset size on the various parameters.
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