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Logistic Regression

* Input dataset:

D ={(puy1)  On )}

p; € RY y; € {1,0}

* Loss function: the log likelihood of the data

n
L(x) = _leogp(yilpz, x)
L=

logp(y|p,x) =y -log(1+e P*)+ (1 —y) - log(1+ eP¥)



Motivation

While efficient solvers for the optimization
problem exist, huge amounts of data lead to
high costs due to:

* Huge memory consumption.

* Infeasible training times (e.g., when using
hyperparameter tuning).

* High communication times.
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Main Technique: Coresets
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Approximately same output, but with:

- Less time
- Less memory

- Less ener
j gy




Contribution I:
No Coreset for the General Case

* We provide example synthetic datasets D for which there
is no coreset of size smaller than |D|.

Following this lower bound, the only hope remaining for

constructing coresets resides in adding additional assumptions.
. J




Contribution II: Coreset for reqgularized
logistic regression

* We add a standard ¢, regularization.

* We then prove that, with probability at least
1 — &, a small coreset (Q exists for any normalized input set P € R?,

Coreset size
t 1
Q] EQ/(—Z (dz Int + ln—)\i
& / 5

Approximation depends linearly on the
error regularization parameter

and logarithmically on | P|
* A coreset construction algorithm that runs in near linear expected

time.

Failure probabillity
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The coreset Is guaranteed to approximate:
- Loss function value.
- Marginal likelihood.
- Log likelihood ratio.




Contribution III: Generalization to
additional loss functions

* We show that our coreset construction scheme holds for any
other loss function loss(p,x) = f(p - x) which satisfies:

i) + 282 < b, (F(=liplilal) +<20)

k k

* For example, the non-convex sigmoid loss function:

flp-x)=

1+ e7Px



(Empirically, a coreset)
of size < 1% can
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(a) Bank Marketing dataset, k = 100 (b) Synthetic dataset, k = 500 (c) Wine dataset, & = 1000
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(d) Bank Marketing dataset, k = 10, R = 6 (e) Wine dataset, k =500, R =4

Figure 3. Experimental results. Fig. 3(a)-3(c): The error of maximizing sum of sigmoids using coreset and uniform sampling. Fig. 3(d)-
3(e): Negative test log-likelihood. Lower is better in all figures.



Future Work

* In future work we hope to extend the work to

handle an even wider range of loss functions.

* We also hope to reduce the dependency of

the coreset size on the various parameters.
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