

Generic Coreset for Scalable Learning of Monotonic Kernels: Logistic Regression, Sigmoid and more

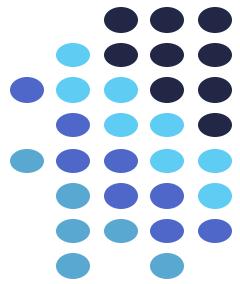
Elad
Tolochinsky

Ibrahim
Jubran

Dan
Feldman

The Robotics & Big Data Lab,
Department of Computer Science,
University of Haifa,
Israel

ICML
International Conference
On Machine Learning



Logistic Regression

- Input dataset:

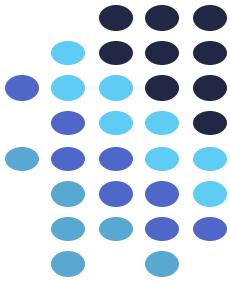
$$D = \{(p_1, y_1), \dots, (p_n, y_n)\}$$

$$p_i \in \mathbb{R}^d, y_i \in \{1, 0\}$$

- Loss function: the log likelihood of the data

$$\mathcal{L}(x) = \sum_{i=1}^n \log p(y_i | p_i, x)$$

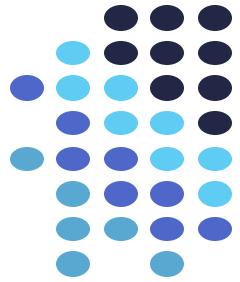
$$\log p(y|p, x) = y \cdot \log(1 + e^{-p \cdot x}) + (1 - y) \cdot \log(1 + e^{p \cdot x})$$



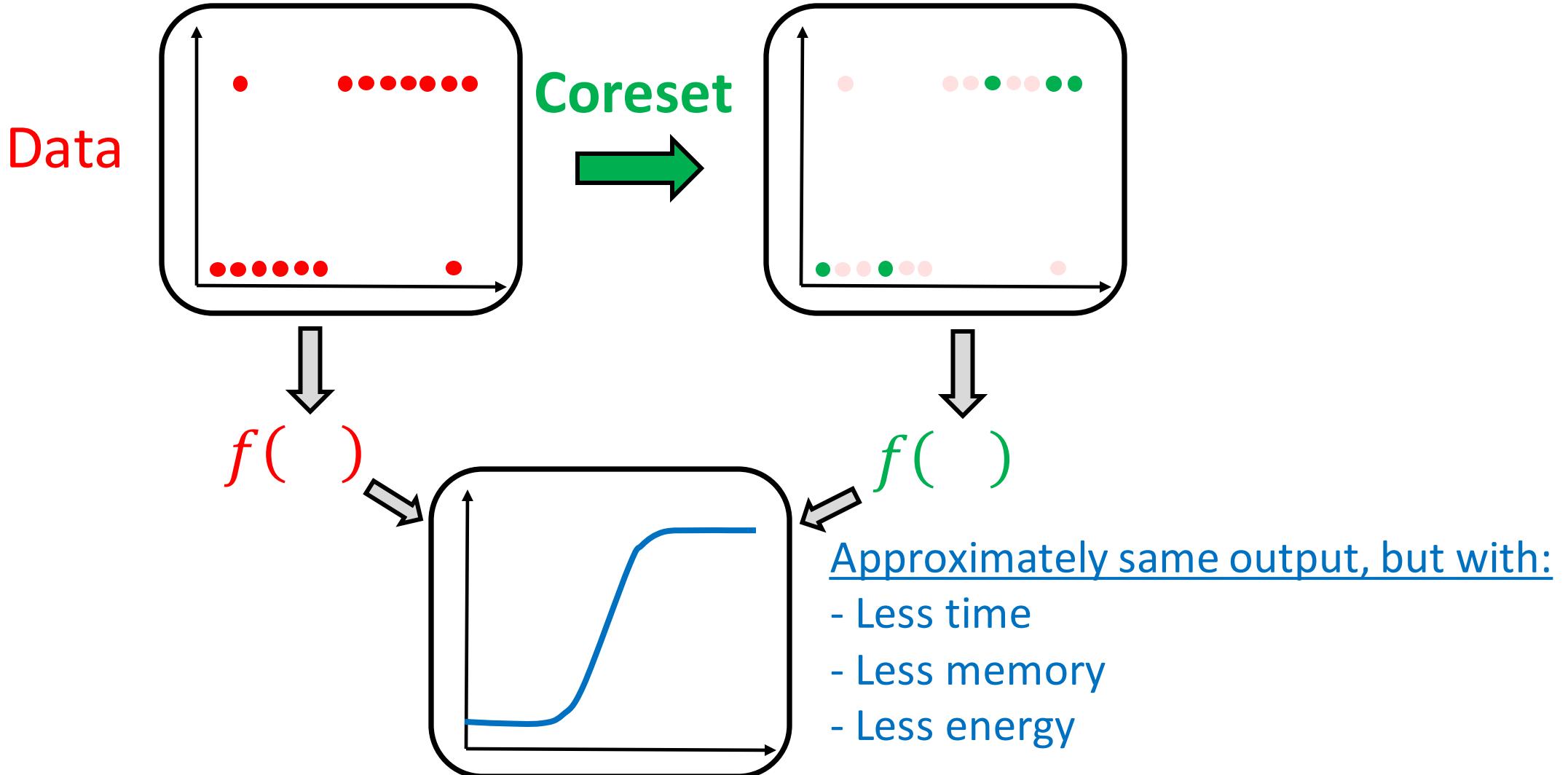
Motivation

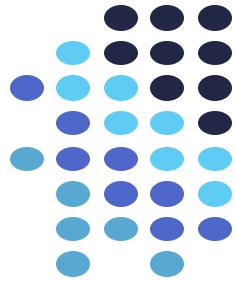
While efficient solvers for the optimization problem exist, **huge amounts of data lead to high costs due to:**

- Huge **memory** consumption.
- Infeasible training **times** (e.g., when using hyperparameter tuning).
- High **communication** times.



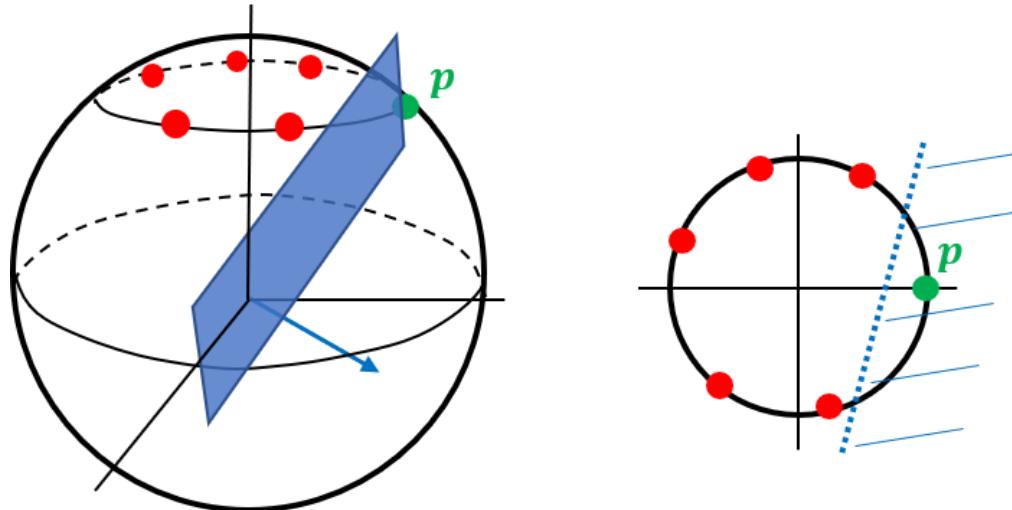
Main Technique: Coresets



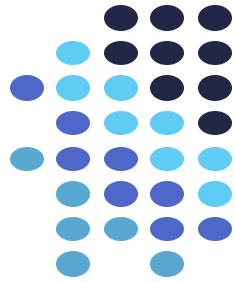


Contribution I: No Coreset for the General Case

- We provide example synthetic datasets D for which there is no coresset of size smaller than $|D|$.



Following this lower bound, the only hope remaining for constructing coresets resides in adding additional assumptions.



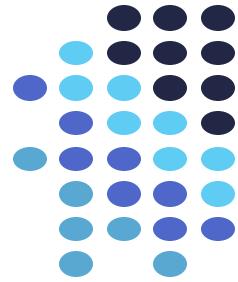
Contribution II: Coreset for regularized logistic regression

- We add a standard ℓ_2 regularization.
- We then prove that, with probability at least $1 - \delta$, a small coresset Q exists for any normalized input set $P \subseteq \mathbb{R}^d$.
Coreset size

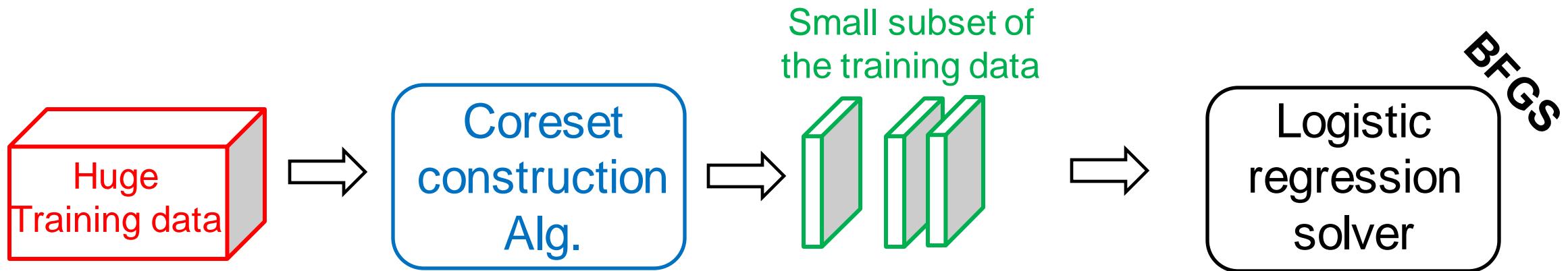
$$|Q| \in \Omega\left(\frac{t}{\varepsilon^2} \left(d^2 \ln t + \ln \frac{1}{\delta}\right)\right)$$

Approximation error depends linearly on the regularization parameter and logarithmically on $|P|$ Failure probability

- A coresset construction algorithm that runs in near linear expected time.

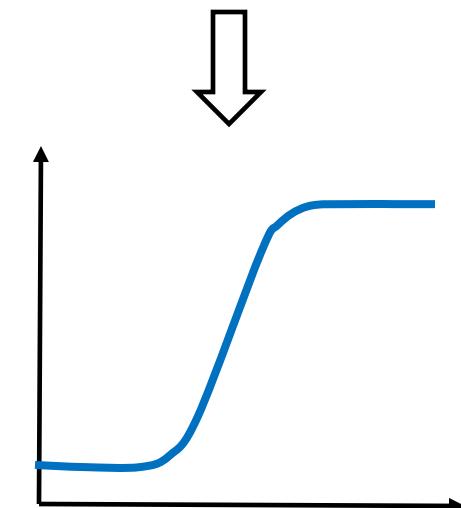


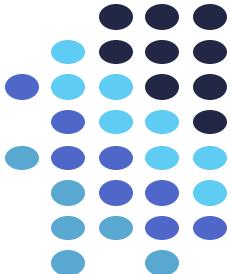
Contribution II: Coreset for regularized logistic regression



The coreset is guaranteed to approximate:

- Loss function value.
- Marginal likelihood.
- Log likelihood ratio.





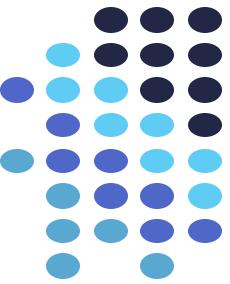
Contribution III: Generalization to additional loss functions

- We show that our coresnet construction scheme holds for any other loss function $\text{loss}(\mathbf{p}, \mathbf{x}) = f(\mathbf{p} \cdot \mathbf{x})$ which satisfies:

$$f(\|\mathbf{p}\| \|\mathbf{x}\|) + \frac{g(\|\mathbf{x}\|)}{k} \leq b_p \left(f(-\|\mathbf{p}\| \|\mathbf{x}\|) + \frac{g(\|\mathbf{x}\|)}{k} \right)$$

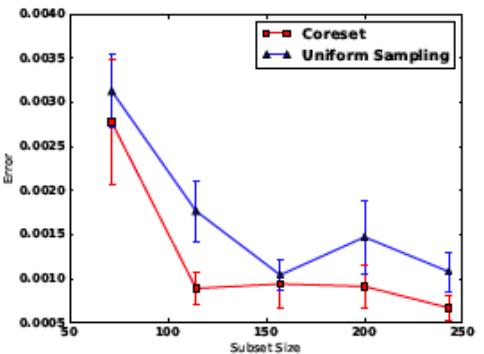
- For example, the non-convex sigmoid loss function:

$$f(\mathbf{p} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{p} \cdot \mathbf{x}}}$$

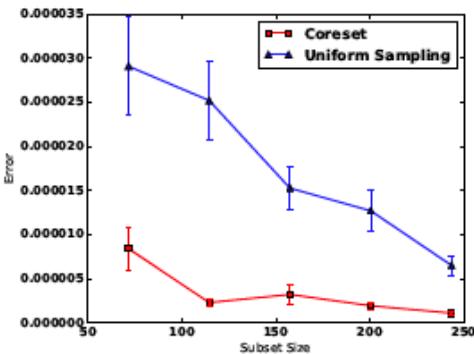


Experimental Results

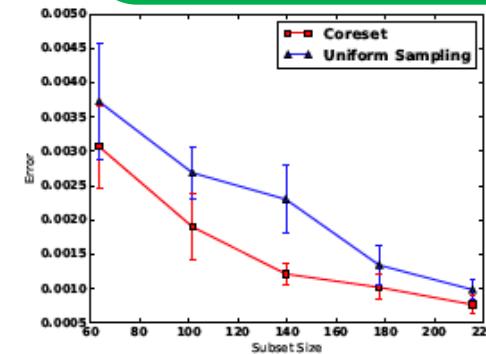
Empirically, a coresset of size $< 1\%$ can produce a small error of $\varepsilon = 0.001$.



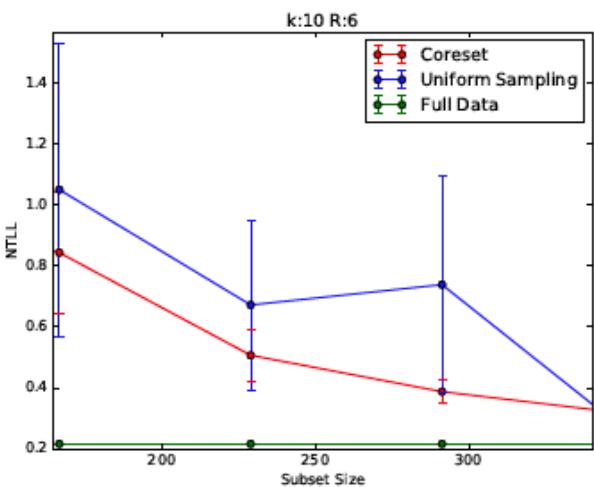
(a) Bank Marketing dataset, $k = 100$



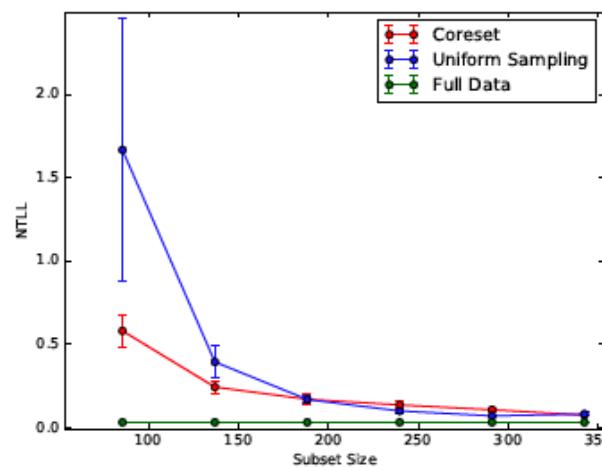
(b) Synthetic dataset, $k = 500$



(c) Wine dataset, $k = 1000$

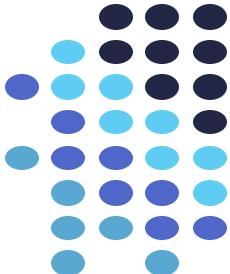


(d) Bank Marketing dataset, $k = 10, R = 6$



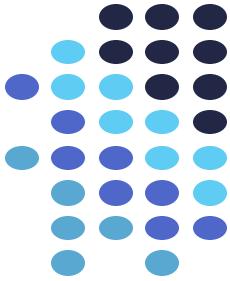
(e) Wine dataset, $k = 500, R = 4$

Figure 3. Experimental results. Fig. 3(a)-3(c): The error of maximizing sum of sigmoids using coresset and uniform sampling. Fig. 3(d)-3(e): Negative test log-likelihood. Lower is better in all figures.



Future Work

- In future work we hope to extend the work to handle **an even wider range of loss functions.**
- We also hope to **reduce the dependency** of the coresets size on the various parameters.



Thank you

Elad Tolochinsky
eladt26@gmail.com

Ibrahim Jubran
ibrahim.jub@gmail.com

Dan Feldman
dannyf.post@gmail.com