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Delayed Reward MDPs

Definition 2.1 (DRMDP). A Delayed Reward Markov De-
cision Process M = (S, A, p, ¢.,7,7y) is described by the
following parameters.

1. The state and action spaces are S and A respectively.
2. The Markov transition function is p(s’|s,a) for each
(s,a) € S x A; the initial state distribution is p(so).

3. The signal interval length is distributed according to
gn(-), i.e., for the i-th signal interval, its length n; is
independently drawn from ¢, (+).

4. The reward function r defines the expected reward gen-
erated for each signal interval; suppose 7; = Ty.p1p, =
(8,a)t:t4m; = ((8¢,08), .- (St4n—1,t4n,—1)) is the
state-action sequence during the :-th signal interval of
length n;, then the expected reward for this interval is
r(7;).

5. The reward discount factor is ~.

t;,/



Past-Invariant DRMDPs

Fact 2.2. For any DRMDP, there exists an optimal policy
m* € I1.. However, there exists some DRMDP such that all

of its optimal policies ™ ¢ 1l;.

Definition 2.3 (PI-DRMDP). A Past-Invariant Delayed
Reward Markov Decision Process is a DRMDP M =
(S, A, p,qn,r,v) whose reward function r satisfies the fol-

lowing Past-Invariant (PI) condition: for any two trajectory
segments 77 and 7o of the same length, and for any two

equal-length trajectory segments 7; and 75 such that the
concatenated trajectories 7, o 7, are feasible under the tran-

sition dynamics p for all a, b € {1, 2}, it holds that

r(rpory) >r(mo Té) < r(mo T{) > r(19 0 Th).



Non-Markovian Rewards

* Normal off-policy algorithms (SAC [Haarnoja et al., 2018]) cannot
handle non-Markovian rewards.
* Biased critic estimate.
* Fixed point ambiguity.
* Large learning variance.



Algorithmic Framework

QW(Tti:t—{-l) = ]E(T,n)rvw Z,Ytj+1—t—l,r(7_j)
=

Tt t+41

which 1s learned by minimizing the following function.

Ly:=Ep [(Rt + 7Q¢(th:t+2) — Qq’;(Tti:H-l))z]

Fact 3.1. For any distribution D with non-zero measure
forany 1.4+ 1, Q" (7¢,.4+1) is the unique fixed point of the
MSE problem in Eq. (4). More specifically, when fixing Q ;

as the corresponding Q7, the solution of the MSE problem
is still OT.



Algorithmic Framework

Proposition 3.3. (Policy Improvement Theorem for PI-
DRMDP) For any policy 7. € 11, the policy iteration
w.r.t. Q% i.e., for any s, and some feasible 1y, .,,

Tk+1(at|se,t — t;) = argmax Q™ (7,4 © (s¢,a)),
a

produces policy i1 € Ilg such that V1,441, it holds that

Q" 1 (1y,.441) = Q™ (Te,:041),

which implies that J (1) > T (k).



HC-Decomposition

* However, we find vanilla implementation has unsatisfactory
performance.

Q¢(Tti:t+l) = qu(Tt,;:t) + Cqb(sta at)a

* Motivated by the Markovian dynamics in DRMDPs.

* Advantages:
1.Less variance in policy gradients.
2.Easier optimization in value evaluation.




Design Evaluation

Episode Return
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omparative Evaluation
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