Off-Policy Reinforcement Learning with Delayed Rewards

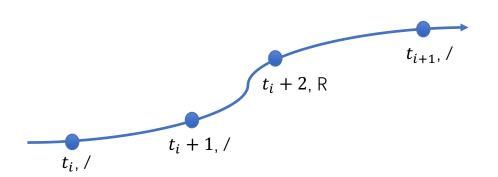
Beining Han, Zhizhou Ren, Zuofan Wu, Yuan Zhou, Jian Peng

ICML | 2022

Delayed Reward MDPs

Definition 2.1 (DRMDP). A Delayed Reward Markov Decision Process $M = (S, A, p, q_n, r, \gamma)$ is described by the following parameters.

- 1. The state and action spaces are S and A respectively.
- 2. The Markov transition function is p(s'|s, a) for each $(s, a) \in S \times A$; the initial state distribution is $p(s_0)$.
- 3. The signal interval length is distributed according to $q_n(\cdot)$, *i.e.*, for the *i*-th signal interval, its length n_i is independently drawn from $q_n(\cdot)$.
- 4. The reward function r defines the expected reward generated for each signal interval; suppose $\tau_i = \tau_{t:t+n_i} = (s, a)_{t:t+n_i} = ((s_t, a_t), \dots (s_{t+n-1}, a_{t+n_i-1}))$ is the state-action sequence during the i-th signal interval of length n_i , then the expected reward for this interval is $r(\tau_i)$.
- 5. The reward discount factor is γ .



Past-Invariant DRMDPs

Fact 2.2. For any DRMDP, there exists an optimal policy $\pi^* \in \Pi_{\tau}$. However, there exists some DRMDP such that all of its optimal policies $\pi^* \notin \Pi_s$.

Definition 2.3 (PI-DRMDP). A Past-Invariant Delayed Reward Markov Decision Process is a DRMDP $M = (S, A, p, q_n, r, \gamma)$ whose reward function r satisfies the following Past-Invariant (PI) condition: for any two trajectory segments τ_1 and τ_2 of the same length, and for any two equal-length trajectory segments τ'_1 and τ'_2 such that the concatenated trajectories $\tau_a \circ \tau'_b$ are feasible under the transition dynamics p for all $a, b \in \{1, 2\}$, it holds that

$$r(\tau_1 \circ \tau_1') > r(\tau_1 \circ \tau_2') \iff r(\tau_2 \circ \tau_1') > r(\tau_2 \circ \tau_2').$$

Non-Markovian Rewards

- Normal off-policy algorithms (SAC [Haarnoja et al., 2018]) cannot handle non-Markovian rewards.
 - Biased critic estimate.
 - Fixed point ambiguity.
 - Large learning variance.

Algorithmic Framework

$$\mathcal{Q}^{\pi}(\tau_{t_i:t+1}) := \mathbb{E}_{(\tau,n)\sim\pi} \left[\sum_{j=i}^{\infty} \gamma^{t_{j+1}-t-1} r(\tau_j) \Big| \tau_{t_i:t+1} \right]$$

which is learned by minimizing the following function.

$$\mathcal{L}_{\phi} := \mathbb{E}_{D} \left[(R_{t} + \gamma \hat{\mathcal{Q}}_{\phi}(\tau_{t_{j}:t+2}) - \mathcal{Q}_{\phi}(\tau_{t_{i}:t+1}))^{2} \right]$$

Fact 3.1. For any distribution D with non-zero measure for any $\tau_{t_i:t+1}$, $Q^{\pi}(\tau_{t_i:t+1})$ is the unique fixed point of the MSE problem in Eq. (4). More specifically, when fixing \hat{Q}_{ϕ} as the corresponding Q^{π} , the solution of the MSE problem is still Q^{π} .

Algorithmic Framework

Proposition 3.3. (Policy Improvement Theorem for PI-

DRMDP) For any policy $\pi_k \in \Pi_s$, the policy iteration w.r.t. \mathcal{Q}^{π_k} , i.e., for any s_t and some feasible $\tau_{t_i:t}$,

$$\pi_{k+1}(a_t|s_t, t-t_i) = \operatorname*{arg\,max}_a \mathcal{Q}^{\pi_k}(\tau_{t_i:t} \circ (s_t, a)),$$

produces policy $\pi_{k+1} \in \Pi_s$ such that $\forall \tau_{t_i:t+1}$, it holds that

$$\mathcal{Q}^{\pi_{k+1}}(\tau_{t_i:t+1}) \ge \mathcal{Q}^{\pi_k}(\tau_{t_i:t+1}),$$

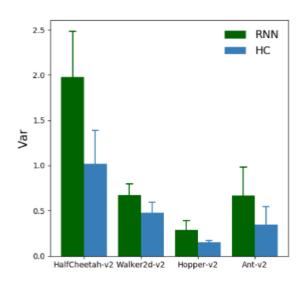
which implies that $\mathcal{J}(\pi_{k+1}) \geq \mathcal{J}(\pi_k)$.

HC-Decomposition

• However, we find vanilla implementation has unsatisfactory performance.

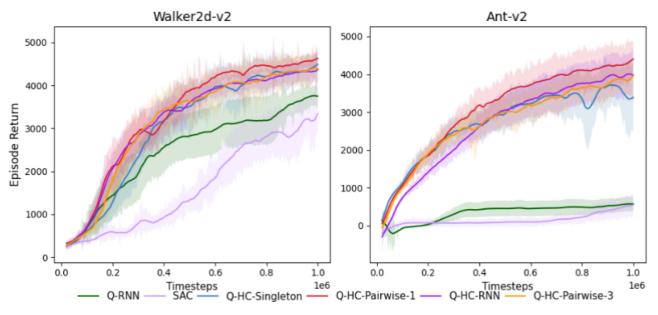
$$\mathcal{Q}_{\phi}(\tau_{t_i:t+1}) = H_{\phi}(\tau_{t_i:t}) + C_{\phi}(s_t, a_t),$$

- Motivated by the Markovian dynamics in DRMDPs.
- Advantages:
 - 1. Less variance in policy gradients.
 - 2. Easier optimization in value evaluation.

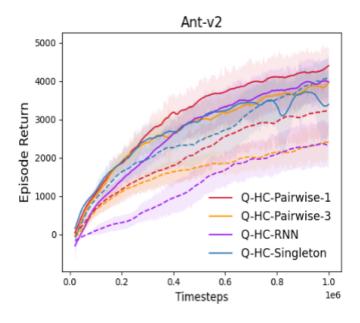


Design Evaluation

$$\mathcal{L}_{\phi}^{\text{HC}} = \mathbb{E}_{D}[(R_{t} + \gamma(\hat{H}_{\phi}(\tau_{t_{i}:t+1}) + \hat{C}_{\phi}(s_{t+1}, a'_{t+1})) - (H_{\phi}(\tau_{t_{i}:t}) + C_{\phi}(s_{t}, a_{t}))^{2}] + \lambda L_{\text{reg}}(H_{\phi}),$$

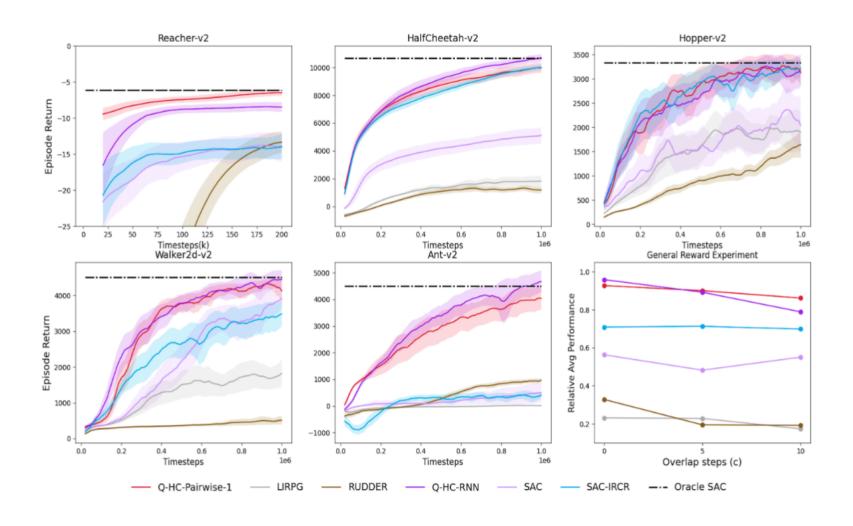


(a) Performance on High-Dimensional Tasks



(b) Ablation on Regulation

Comparative Evaluation



Reference

Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. InInternational conference on machine learning 2018 Jul 3 (pp. 1861-1870). PMLR.