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Background

In the DNA storage pipeline, retrieved DNA sequences need to be clustered
before they can be decoded.
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AGGTCGG CTCAACC
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The retrieved reads may contain errors such
as base insertions, deletions or substitutions.
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In the DNA storage pipeline, retrieved DNA sequences need to be clustered
before they can be decoded.
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retrieved sequences

CAAATGC
CAAATGC
CAAATGC
CGAATGC
CAAAAGC
CAGAATG
CAATGCC

CTGCAAC
CTGCAAC
CTGCAAC
CTGTCAA
CTCAACC

AGGTCGG
AGGTCGG
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AGGTCGT

clusters

The retrieved reads may contain errors such
as base insertions, deletions or substitutions.

TAATTGC
CAAATGC
CTGCAAC
AGGTCGG

—

original sequeces binary data
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Background

To cluster the retrieved sequences, the Levenshtein distance (Edit distance) Is
used to evaluate the similarity between two sequences.
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Background

To cluster the retrieved sequences, the Levenshtein distance (Edit distance) Is
used to evaluate the similarity between two sequences.

Levenshtein distance (Edit distance):

The Levenshtein distance between two sequences is the minimum number of insertions,
deletions, or substitutions required to modify one string to the other.
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Background

To cluster the retrieved sequences, the Levenshtein distance (Edit distance) Is
used to evaluate the similarity between two sequences.

Levenshtein distance (Edit distance):

The Levenshtein distance between two sequences is the minimum number of insertions,
deletions, or substitutions required to modify one string to the other.

* Levenshtein distance cannot be computed in 0(n?7¢€),Ve > 0, unless the strong exponential
time hypothesis Is false.
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Levenshtein distance embedding

Find an embedding function f(-) that maps the DNA sequences s,t to their
embedding vectors u = f(s),v = f(t), such that the Levenshtein distance
between s,t can be approximated by the commonly used distances between

u,v, d(st)~ dluv).




Levenshtein distance embedding

Find an embedding function f(-) that maps the DNA sequences s,t to their
embedding vectors u = f(s),v = f(t), such that the Levenshtein distance
between s,t can be approximated by the commonly used distances between
u,v, d(st)~ dluv).

The deep learning-based approach — Siamese Neural Network
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Levenshtein distance embedding

Find an embedding function f(-) that maps the DNA sequences s,t to their
embedding vectors u = f(s),v = f(t), such that the Levenshtein distance
between s,t can be approximated by the commonly used distances between

u,v, d(st)~ dluv).

The deep learning-based approach — Siamese Neural Network
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Squared Euclidean Distance:

n

dﬁ% = Z(uz - 'Uz')2.

=1
By optimizing:
f = argmin £(d, d; )
0

one will obtain the parameters 6 that enables
the f(+; 8) as the embedding function.
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Why do we use the squared Euclidean distance?

* The ground truth discrete distance can be interpreted as the degree of freedom of
the difference between the embedding vectors u — v.
* The Siamese neural network can be optimized by a better loss.
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Why do we use the squared Euclidean distance?

* The ground truth discrete distance can be interpreted as the degree of freedom of
the difference between the embedding vectors u — v.

* The Siamese neural network can be optimized by a better loss.

Notations and Assumptions

Homologous sequences:
Intra cluster sequences, which are similar to
each other.

Non-homologous sequences:
Inter cluster sequences, which are none
related to each other.

CTGCAAC
CTGCAAC — CTGCAAC

CTGTCAA CTGCAAC
CTGCAAC CTGTCAA
CTCAACC
CTECAAC TAATTGC
TAATTGC
TAATTOL - raaTT6c




Notations and Assumptions

 Each element u; of the embedding vector follows the standard normal
distribution N(0,1):

By using the Batch Normalization layer, the mean and std values of the
embedded element u; will be close to 0 and 1 respectively.
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Notations and Assumptions

 Each element u; of the embedding vector follows the standard normal
distribution N(0,1):

By using the Batch Normalization layer, the mean and std values of the
embedded element u; will be close to 0 and 1 respectively.

* The embedding elements u;, u; are independent, iff i # j;

Dependence of embedding elements 1s a waste of the embedding
dimension when the information in the original sequence is not fully
expressed.
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Notations and Assumptions

 Each element u; of the embedding vector follows the standard normal
distribution N(0,1):

By using the Batch Normalization layer, the mean and std values of the
embedded element u; will be close to 0 and 1 respectively.

* The embedding elements u;, u; are independent, iff i # j;

Dependence of embedding elements 1s a waste of the embedding
dimension when the information in the original sequence is not fully
expressed.

* If sequences s and t are non-homologous, their embedding elements u;
and v; are independent.
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From the degree of freedom to the embedding dimension

If s,t are non-homologous sequences:
* By multiplying a rescaling factor \/; the u;— v; follows N(0,1);

* Theu; —v; and u; — vj are independent, iff i # J.
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From the degree of freedom to the embedding dimension

If s,t are non-homologous sequences:
* By multiplying a rescaling factor \/; the u;— v; follows N(0,1);
* Theu; —v; and u; — vj are independent, iff i # J.
The squared Euclidean distance between u, v follows chi-squared distribution

L (ui- v)? ~ x2(d),

where the d is the dimension of the embedding vector.
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From the degree of freedom to the embedding dimension

If s,t are non-homologous sequences:
* By multiplying a rescaling factor \/; the u;— v; follows N(0,1);

* Theu; —v; and u; — vj are independent, iff i # J.

The squared Euclidean distance between u, v follows chi-squared distribution
Ly (ui- v)? ~ x*(d),

where the d is the dimension of the embedding vector.

The expectation of chi-squared distribution is the degree of freedom, and should meet
the average value of Levenshtein distances between non-homologous sequences.

On the engaged DNA-Fountain dataset, this numberis d = 80.

B IA REAEARKE

NS y, “W” Center for Applied Mathematics, Tianjin University




From the degree of freedom to the ground truth distance

If s,t are homologous sequences:
We say the degree of freedom withu — v is d, if
u—v =yP = (y4,..,940,..,0)P
where P is an orthogonal matrix, and y; are i.d.d. and follow N(0,1).
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From the degree of freedom to the ground truth distance

If s,t are homologous sequences:
We say the degree of freedom withu — v is d, if
u—v = yP = (y,..,Y40,...,0)P
where P is an orthogonal matrix, and y; are i.d.d. and follow N(0,1).

The smaller the ground truth distance d; is, the more related the embedding vectors
u and v are, and the less free variables y;s are needed to support the u — v.

B IA REAEARKE

NS y, “W” Center for Applied Mathematics, Tianjin University




From the degree of freedom to the ground truth distance

If s,t are homologous sequences:
We say the degree of freedom withu — v is d, if
u—v =yP = (y4,..,940,..,0)P

where P is an orthogonal matrix, and y; are i.d.d. and follow N(0,1).

The smaller the ground truth distance d; is, the more related the embedding vectors
u and v are, and the less free variables y;s are needed to support the u — v.

The squared Euclidean distance between u, v is
d
d = (u-v)(u-v)" = yPPTy" = yy' = zyiz
i=1

and follows the chi-squared distribution with the degree of freedom d

d ~ x%(d).
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From the degree of freedom to the ground truth distance

If s,t are homologous sequences:
We say the degree of freedom withu — v is d, if
u—v =yP = (y4,..,940,..,0)P

where P is an orthogonal matrix, and y; are i.d.d. and follow N(0,1).

The smaller the ground truth distance d; is, the more related the embedding vectors
u and v are, and the less free variables y;s are needed to support the u — v.

The squared Euclidean distance between u, v is
d
d = (u-v)(u-v)" = yPPTy" = yy' = zyiz
i=1

and follows the chi-squared distribution with the degree of freedom d
d ~ x2(d).

By the squared Euclidean embedding, the approximation of ground truth distance d; can be
interpreted as forcing the embedding u — v to have degree of freedom d;.
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The regression

The commonly used approximation errors are usually symmetric on ground truth d.
For example, the MSE is calculated as

MSE(d, d) = (d — d)?.
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The regression

The commonly used approximation errors are usually symmetric on ground truth d.
For example, the MSE is calculated as

MSE(d, d) = (d — d)?.

However, when distances are approximated, the approximations are skewed around the ground
truth distance.

meaningless ground acceptable

prediction truth prediction

d=-0.5 d=1 d=25
~1.0-0.5 0. 1.0 2.0 25 3.0
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The regression

By the connection between the ground truth distance and the degree of freedom with the
embedding u — v, the predicted distance d should follow the chi-squared distribution,

d ~ x?(d).

where the d is the ground truth distance.
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The regression

By the connection between the ground truth distance and the degree of freedom with the
embedding u — v, the predicted distance d should follow the chi-squared distribution,

d ~ x*(d).
where the d is the ground truth distance.

An entropy style loss function can be defined by

REx?(d, d) = —log qa(d)

d d d A
= —4logl'|( =) - =—-1]1
2Jrog (2) (2 )ogd

A

].
—+ og e
2 g Y

where the q4(x) is the pdf of xy%(d) distribution.
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Experiments

The following three options are available for the proposed approach:

* The structure of embedding neural network.

Plenty structures can be used for the embedding function f(-).
* Embedding space

Instead of the squared Euclidean distance, one can use alternative distances, such as
Manhattan distance, Euclidean Distance, etc..
* Chi-square regressing

MAE an MSE can be engaged as the alternative optimization target.
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Experiments

Metric Embed CNN-ED-5 CNN-ED-10
MSE MAE RE)? MSE MAE RE)?
12 4.74 4+ 0.03 3.57 +£0.18 5.66 +£0.15 4.60 +0.13 3.70 £ 0.16 5.26 + 0.04
AE 45 6.23 +0.01 3.73 £ 0.11 6.02 + 0.42 5.93 + 0.07 3.56 4+ 0.06 5.00 + 0.06
E% 4.20 + 0.06 4.12 +0.02 4.67 +0.09 4.11 +0.01 4.12 +£0.08 4.53 4+ 0.03
2 3.50 + 0.02 2.50 & 0.15 1.89 + 0.05 3.44 4+ 0.04 271 +0.19 1.96 + 0.01
AE,;, Ly 5.99 4+ 0.01 2.69 + 0.08 2.594+0.03 5.88 +0.02 2.69 +0.14 2.77 + 0.05
E% 0.90 £ 0.05 0.96 + 0.09 0.90 + 0.00 1.11 £ 0.02 1.56 £ 0.15 0.91 + 0.01
2 99.98 + 0.00 96.57 + 0.30 99.42 +0.11 99.98 + 0.01 96.59 + 0.27 99.27 + 0.04
OA 45 99.85 4+ 0.01 96.40 + 0.26 98.34 + 0.09 99.66 £ 0.06 96.81 + 0.09 98.14 + 0.02
E% 99.98 + 0.01 99.85 + 0.08 99,98 + 0.00 99.91 + 0.00 99.06 + 0.16 99.98 + 0.01
Metric Embed R GRU
MSE MAE RE2 MSE MAE REy2
2 5.25 +£0.05 4.32 + 043 5.804+0.18 4.61 £0.14 3.45 4+ 0.26 5.36 + 0.06
AE Ly 7.15 +0.08 5.11 £ 044 6.71 +£0.33 7.524+0.15 3.89 +£0.15 5.324+0.05
E% 4.31 +0.01 4.36 + 0.06 5.41 4+ 0.02 3.98 +0.02 4.05 +£0.02 5.51 4+ 0.05
4 4.06 £+ 0.05 3.25+0.28 2.254+0.03 3.55 +0.09 248 +0.27 2.09 £+ 0.05
AE;, 2 6.49 + 0.15 3.56 4+ 0.26 3.154+0.14 6.40 + 0.04 2.75 +0.09 2.73 +0.02
E% 1.03 +0.02 1.14 4+ 0.24 0.91 + 0.01 0.73 £+ 0.03 0.67 £ 0.02 0.88 + 0.00
2 99.96 + 0.01 96.51 +0.42 99.15+0.13 99,98 + 0.00 96.72 + 0.25 99.40 + 0.14
OA 4y 99.77 + 0.02 96.10 + 0.87 98.23 +0.13 99.88 + 0.01 96.25 + 0.26 98.21 + 0.02
E% 99,96 + 0.00 99.77 +0.18 99.94 + 0.00 100.00+ 0.00 99,99 4+ 0.00 99.97 + 0.00
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Thank you for listening!
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