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Background

To cluster the retrieved sequences, the Levenshtein distance (Edit distance) is
used to evaluate the similarity between two sequences.

• Levenshtein distance cannot be computed in 𝑂 𝑛!"# , ∀𝜖 > 0, unless the strong exponential
time hypothesis is false.

Levenshtein distance (Edit distance):

The Levenshtein distance between two sequences is the minimum number of insertions,
deletions, or substitutions required to modify one string to the other.
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The deep learning-based approach – Siamese Neural Network

By optimizing:

one will obtain the parameters "𝜃 that enables
the 𝑓 ⋅; "𝜃 as the embedding function.

Levenshtein distance embedding
Find an embedding function 𝑓 ⋅ that maps the DNA sequences 𝒔, 𝒕 to their
embedding vectors 𝒖 = 𝑓 𝒔 , 𝒗 = 𝑓 𝒕 , such that the Levenshtein distance
between 𝒔, 𝒕 can be approximated by the commonly used distances between
𝒖, 𝒗, 𝑑! 𝒔, 𝒕 ≈ 𝑑 𝒖, 𝒗 .

Squared Euclidean Distance:
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Notations and Assumptions

Homologous sequences:
Intra cluster sequences, which are similar to
each other.

Non-homologous sequences:
Inter cluster sequences, which are none
related to each other.
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Notations and Assumptions

• Each element 𝑢' of the embedding vector follows the standard normal
distribution 𝑁 0,1 ;

By using the Batch Normalization layer, the mean and std values of the
embedded element 𝑢' will be close to 0 and 1 respectively.

• The embedding elements 𝑢', 𝑢( are independent, iff 𝑖 ≠ 𝑗;

Dependence of embedding elements is a waste of the embedding
dimension when the information in the original sequence is not fully
expressed.

• If sequences 𝒔 and 𝒕 are non-homologous, their embedding elements 𝑢'
and 𝑣( are independent.
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If 𝒔, 𝒕 are non-homologous sequences:

• By multiplying a rescaling factor !
!

, the 𝑢$– 𝑣$ follows 𝑁(0,1);

• The 𝑢$ − 𝑣$ and 𝑢% − 𝑣% are independent，iff 𝑖 ≠ 𝑗.

The squared Euclidean distance between 𝑢, 𝑣 follows chi-squared distribution

∑$&'( 𝑢$– 𝑣$ ! ∼ 𝜒! 𝑑 ,

where the 𝑑 is the dimension of the embedding vector.

The expectation of chi-squared distribution is the degree of freedom, and should meet
the average value of Levenshtein distances between non-homologous sequences.

On the engaged DNA-Fountain dataset, this number is 𝑑 = 80.
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and follows the chi-squared distribution with the degree of freedom 𝑑

?𝑑 ∼ 𝜒! 𝑑 .

By the squared Euclidean embedding, the approximation of ground truth distance 𝑑! can be
interpreted as forcing the embedding 𝒖 − 𝒗 to have degree of freedom 𝑑! .

If 𝒔, 𝒕 are homologous sequences:

The smaller the ground truth distance 𝑑) is, the more related the embedding vectors
𝒖 and 𝒗 are, and the less free variables 𝑦$s are needed to support the 𝒖 − 𝒗.
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The regression

The commonly used approximation errors are usually symmetric on ground truth 𝑑.
For example, the MSE is calculated as

MSE( ?𝑑, 𝑑) = ( ?𝑑 − 𝑑)!.

However, when distances are approximated, the approximations are skewed around the ground
truth distance.

ground
truth
𝑑 = 1

acceptable
prediction
"𝑑 = 2.5

meaningless
prediction
"𝑑 = −0.5
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By the connection between the ground truth distance and the degree of freedom with the
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The regression

By the connection between the ground truth distance and the degree of freedom with the
embedding 𝒖 − 𝒗, the predicted distance ?𝑑 should follow the chi-squared distribution,

?𝑑 ∼ 𝜒! 𝑑 .
where the 𝑑 is the ground truth distance.

An entropy style loss function can be defined by

where the 𝑞((𝑥) is the pdf of 𝜒! 𝑑 distribution.



Experiments

The following three options are available for the proposed approach:

• The structure of embedding neural network.

Plenty structures can be used for the embedding function 𝑓 ⋅ .

• Embedding space

Instead of the squared Euclidean distance, one can use alternative distances, such as

Manhattan distance, Euclidean Distance, etc..

• Chi-square regressing

MAE an MSE can be engaged as the alternative optimization target.
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