Choosing Answers in ε -Best-Answer Identification for Linear Bandits

Marc Jourdan and Rémy Degenne

June 17, 2022

Initial goal: Identify the item having the highest averaged return.

Problem: When the two best items have highly similar averaged return, the number of samples required to differentiate them is large.

Corrected goal: Identify one item which is ε -close to the best one (ε -BAI).

Challenge: Multiple correct answers.

- ? How to choose among the set of ε -optimal answers ?
- Solution Focus on the ε -optimal answer which is the easiest to verify.

ε -BAI for Transductive linear Gaussian bandits

Transductive linear Gaussian bandits:

- arm $a \in \mathcal{K}$, finite subset of \mathbb{R}^d ,
- answer $z \in \mathcal{Z}$, finite subset of \mathbb{R}^d ,
- unknown mean parameter, $\mu \in \mathbb{R}^d$.

At time t, pull $a_t \in \mathcal{K}$ and observe $X_t^{a_t} \sim \mathcal{N}(\langle \mu, a_t \rangle, 1)$.

Goal: Identify one ε -optimal answer with confidence δ , $z \in \mathcal{Z}_{\varepsilon}(\mu)$. **Objective:** Minimize $\mathbb{E}_{\mu}[\tau_{\delta}]$ for (ε, δ) -PAC algorithms

$$\mathbb{P}_{\mu}\left[\tau_{\delta} < +\infty, \ z_{\tau_{\delta}} \notin \mathcal{Z}_{\varepsilon}(\mu)\right] \leq \delta \ .$$

? What is the best one could achieve ? Degenne and Koolen (2019) For all (ε, δ) -PAC strategy, for all μ , $\liminf_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau_{\delta}]}{\ln(1/\delta)} \geq T_{\varepsilon}(\mu)$.

? How to choose among the set of ε-optimal answers ?
Furthest answer: ε-optimal answer for which its alternative is the easiest to differentiate from thanks to an optimal allocation over arms.

$$(z_F(\mu), w_F(\mu)) \stackrel{\text{def}}{=} \underset{(z,w) \in \mathcal{Z}_{\varepsilon}(\mu) \times \triangle_K}{\arg \max} \inf_{\lambda \in \neg_{\varepsilon} z} \frac{1}{2} \|\mu - \lambda\|_{V_w}^2 ,$$

are the maximizers realizing $T_{\varepsilon}(\mu)$. $\neg_{\varepsilon}z$ alternative to z, \triangle_K simplex, $V_w = \sum_{a \in \mathcal{K}} w^a a a^{\intercal}$ design matrix with norm $\|\cdot\|_{V_w}$.

Greedy answer: $z^*(\mu) = \arg \max_{z \in \mathbb{Z}} \langle \mu, z \rangle$, unique correct answer in BAI. sample inefficient, 10% higher empirical stopping time for $\delta = 1\%$.

Adapting any BAI algorithm for ε -BAI

- ? How to stop to obtain an (ε, δ) -PAC strategy ? calibrated **GLR stopping rule** for $z_t \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})$
- ? Which z_t should we **recommend** to stop as early as possible ?
- Instantaneous furthest answer: ε-optimal answer with highest GLR

$$z_F(\mu_{t-1}, N_{t-1}) = \operatorname*{arg\,max}_{z \in \mathcal{Z}_{\varepsilon}(\mu_{t-1})} \inf_{\lambda \in \neg_{\varepsilon} z_t} \|\mu_{t-1} - \lambda\|_{V_{N_{t-1}}}^2,$$

where $N_{t-1}^a = \sum_{s=1}^{t-1} \mathbf{1}_{\{a_s=a\}}$ and $\mu_{t-1} = V_{N_{t-1}}^{-1} \sum_{s=1}^{t-1} X_s^{a_s} a_s$.

? How to modify any BAI algorithms to be (ε, δ) -PAC ?

use GLR stopping with $z_t \in z_F(\mu_{t-1}, N_{t-1})$, keep the sampling rule unchanged.

L ε BAI (Linear ε -BAI)

Can we achieve asymptotic optimality and be empirically competitive ? \square L ε BAI, by using the concept of furthest answer in the sampling rule.

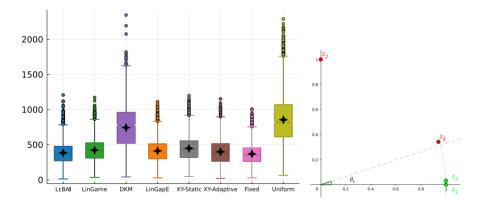


Figure: Empirical stopping time of L ε BAI compared to modified BAI algorithms.

- On't choose greedily: aim at identifying the furthest answer !
- Simple procedure to adapt your favorite BAI algorithm to ε-BAI.
- L\varepsilon BAI, asymptotically optimal and empirically competitive.

