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Scientific Machine
Computing Learning
. don transform = :
Given a forward operator A € R™d and edentenstom A | m‘
corrupted measurements y = Ax, + e with g
lell, < n, reconstruct the signal x,. |
\_J |
o Often ill-posed due to undersampling (m « d) “
or ill-conditioned forward operator A
Classical variational methods Modern deep learning methods
~ - 2 , .
X, = argmin |ly - Ax||5 + A- R(x) Xy = NSt[G‘](y)/ min L 5" IINet[61(y') - x} I3
X ggg “Infer knowledge directly from data {(yi,xg)}?;."




|s Deep Learning for Inverse Problems Reliable?

> Since 2016: Paradigm shift from sparsity-based y = Axo + e with [lel|, s n
regularization to deep learning iasidee et al 2019, ongie et al. 2020

x-Wj
(post-processing, unrolling, gen. models, PnP, learned reg,, DIP, ...) [Sle-l Sl H-Sle

[Gregor & LeCun 2010]

FBP TV FBPConvNet
SNR 13.43 SNR 24.89 SNR 28.53

[Jin et al. 2017]
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x-Wj
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> A lack of theoretical foundation has sparked a
controversial debate about reliability mntun etat 2020

I -~ Net(y)l, < llx, - Net(Axy)ll, + [INet(Ax,) - Net(y)Il,
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> Since 2016: Paradigm shift from sparsity-based y = Axo + e with [lel|, s n
regularization to deep learning iasidee et al 2019, ongie et al. 2020

x-Wj
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[Gregor & LeCun 2010]

> A lack of theoretical foundation has sparked a
controversial debate about reliability mntun etat 2020

I -~ Net(y)l, < llx, - Net(Axy)ll, + [INet(Ax,) - Net(y)Il,

Accuracy Robustness - Uin et al. 2017]

Optimistic results in

Solving Inverse Problems With Deep
Neural Networks — Robustness Included?
Genzel, Macdonald, Marz [IEEE TPAMI 2022]
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|s Deep Learning for Inverse Problems Reliable?

» Since 2016: Paradigm shift from sparsity-based y = Axo + e with [lel|, s n
regularization to deep learning (aridge et at 2019; ongie et al. 2020

X~
(post-processing, unrolling, gen. models, PnP, learned reg,, DIP, ...) Sterl S-Sl
. ] [Gregor & LeCun 2010]
» A lack of theoretical foundation has sparked a

FBP TV FBPConvNet

SNR 13.43 SNR 24.89 SNR 28.53

[Antun et al. 2020]

I -~ Net(y)l, < llx, - Net(Axy)ll, + [INet(Ax,) - Net(y)Il,

Accflrracy Robu;ccness [in et al. 2017]
Hat h 5 of i , Optimistic results in
What dppens at the noisefree (imit n= 0" Solvinglnverse Problems With Deep
Can NNs produce near-perfect solutions, i.e,, Neural Networks - Robustness Included?

Genzel, Macdonald, Marz [IEEE TPAMI 2022]

% - Net(Ax)ll, = 0 7
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“Do CNNs Solve the CT Inverse Problem?” sy et at 2001

» Based on research by Emil Sidky et al. on sparse-view breast CT
» Answer for post-processing by U-net: No! Sparse-view

> Goal of AAPM Challenge: “The challenge seeks the e
data-driven methodology that provides the most
accurate reconstruction of sparse-view CT data.”

Home | Directory | Cu"u.r;'/;?uv ces SIﬂOgram y
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?V of PHYSICISTS IN MEDICINE HEREN {petasiees) Phantom image Xo

(ground-truth)

Improving Health 5 .
Though Medical Physics  Deep Learning for Inverse Problems: Sparse-View Computed Tomography

Login Image Reconstruction (DL-sparse-view CT)

AAPM
An AAPM Grand Challenge
Public & Media

; Overview
International

The American Association of Physicists in Medicine (AAPM) is
sponsoring a “Grand Challenge” on deep-learning for image
Membership reconstruction leading up to the 2021 AAPM Annual Meeting.
Students The DL-sparse-view CT challenge will provide an opportunity
for investigators in CT image reconstruction using data-driven
techniques to compete with their colleagues on the accuracy of
their methodology for solving the inverse problem associated

Medical Physicist

Meetings

Education
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“Do CNNs Solve the CT Inverse Problem?” sy et at 2001

» Based on research by Emil Sidky et al. on sparse-view breast CT
» Answer for post-processing by U-net: No!

> Goal of AAPM Challenge: “The challenge seeks the
data-driven methodology that provides the most

Sparse-view
fanbeam operator

accurate reconstruction of sparse-view CT data.” l
» Challenge dataset: M = 4000 pairs of .
. Inogram y
* breast-phantom images (d=512x512) (noiseless) T ———

* noiseless sparse-view sinograms (128 views) (ground-truth)
* (sparse-view FBP images)

» Evaluation by RMSE ( = %Z?L\/IIX(')-%II%/C’)
< TV minimization can solve the problem (RMSE = 1e-6)

» Timeline: Mar 17 — Jun 1, 2021
< Approx. 60 groups participated (25 in final phase)
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Answer for post-processing by U-net: No!

Goal of AAPM Challenge: “The challenge seeks the
data-driven methodology that provides the most
accurate reconstruction of sparse-view CT data.”

Challenge dataset: M = 4000 pairs of
 breast-phantom images (d=512x512)

* noiseless sparse-view sinograms (128 views)
* (sparse-view FBP images)

Evaluation by RMSE (= 2 2, Vlxs - %513/ d)
< TV minimization can solve the problem (RMSE = 1e-6)

Timeline: Mar 17 = Jun 1, 2021
< Approx. 60 groups participated (25 in final phase)

Sparse-view
fanbeam operator

. \J

Sinogram y :
(noiseless) Phantom image x,
(ground-truth)

FBP = Filtered backprojection

(model-based inversion)



“Do CNNs Solve the CT Inverse Problem?” sy et at 2001

» Based on research by Emil Sidky et al. on sparse-view breast CT

» Answer for post-processing by U-net: No!

Sparse-view
fanbeam operator

> Goal of AAPM Challenge: “The challenge seeks the
data-driven methodology that provides the most
accurate reconstruction of sparse-view CT data.” l

> Challenge dataset: M = 4000 pairs of

) Sinogram y
* breast-phantom images (d=512x512) (noiseless)
* noiseless sparse-view sinograms (128 views)

* (sparse-view FBP images)

» Evaluation by RMSE ( = + \/||Xo Roll5/d)
< TV minimization can solve the problem (RMSE = 1e-6)

» Timeline: Mar 17 — Jun 1, 2021
< Approx. 60 groups participated (25 in final phase)
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Unknown to participants!

Phantom image X,
(ground-truth)

FBP = Filtered backprojection

(model-based inversion)



Our Approach to the AAPM Challenge

» Step 1: Fully data-driven operator identification
based on a parameterized fwd. model A[O] [ ]

ming 3, [|A16] (x;) - ' H;

Sinogram y

Phantom image Xg
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Our Approach to the AAPM Challenge

» Step 1: Fully data-driven operator identification
based on a parameterized fwd. model A[O]

mine Z’- HA[Q] (X(I))_ylui Sinogram y

/ Phantom image Xg
: X-ray source

Deep-learning-style optimization (backprop/autodiff) Mangle

- =~

Ndetector

Sdetector detector array
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Our Approach to the AAPM Challenge

» Step 1: Fully data-driven operator identification
based on a parameterized fwd. model A[O]

ming ¥, [|AL6] (xp) - ¥ H;

Sinogram y

Phantom image X,

> Step 2: Pre-train a UNet as FBP—post—processor lJin et al. 2017; Kang et al. 2017; .
miny ¥, || x; - [UNet[6] - FBP](y H

g stage 0 UNet[6]
+@ ﬁ [Ronneberger et al. 2015]
V m mﬂﬂﬂ 4 g@;ﬁ W Hfgﬂ W@

= Reconstruction
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ming 3, [|A16] (x;) - ' H;
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> Step 2: Pre-train a UNet as FBP—post—processor lJin et al. 2017; Kang et al. 2017; .
miny ¥, || x; - [UNet[6] - FBP](y H

UNet[6]
[Ronneberger et al. 2015]

computational backbone “learned” Q ﬁ'ﬁ mﬂﬂﬂ e i | Hfﬂﬂ W@

(depends on A[9])

UNet[6O .
6] = Reconstruction
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Our Approach to the AAPM Challenge

» Step 1: Fully data-driven operator identification

based on a parameterized fwd. model A[O] I l
ming 3, [ A6] (x;) -vi\\i

Sinogram y

Phantom image Xg

» Step 2: Pre-train a UNet as FBP-pOSt-processor inetal.201; kang et al. 2017 .

[Aggarwal et al. 2018; Schlemper et al. 2019;

» Step 3: Construct an iterative scheme (= ItNet) Hammernik, Schlemper, et al. 2021; .

DC(x,y) = x - A, - FBP(AX - y)

®

= Reconstruction

ICML 2022 4



Our Approach to the AAPM Challenge

» Step 1: Fully data-driven operator identification

based on a parameterized fwd. model A[O] I l
ming 3, [ A6] (x;) -vi\\i

Sinogram y
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» Step 2: Pre-train a UNet as FBP-pOSt-processor inetal.201; kang et al. 2017 .

[Aggarwal et al. 2018; Schlemper et al. 2019;

» Step 3: Construct an iterative scheme (= ItNet) Hammernik, Schlemper, et al. 2021; .
promotes __—> DC(X, y) =X- /\k’ . FBP(AX - y)

®

pre-trained

UNet[0]

= Reconstruction
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Challenge Results — Team: robust-and-stable

Baselines Our Network Variants ~ Comparison Networks

Chall. FBP  Our FBP U-net ltNet Tiramisu LPD

RMSE 5.72e-3 3.40e-3  3.50e-4 6.37e-6 2.24e-4 1.24e-4

[Jégou et al. 2017; Adler & Oktem 2018]

ItNet (RMSE = 6.23e-06)

Results

- Res
H_MMI
05/31/21 robust-and-stable 0.00000637 (1)
2 TUM 4 05/31/21 YM & RH 0.00003989 (2) 7
3 cebel67 4 05/31/21 DEEP_UL 0.00012923 (3)

4e-03

0e+00

-4e-03

4  deepx 3 05/31/21 0.00015935 (4) e (EEE = 2 TSe

5  Haimiao 4 05/29/21 HBB 0.00018119 (5)

6  HKim 2 05/31/21 MIR 0.00026678 (6) e

7 luke199629 5 05/31/21 0.00028064 (7)

8 yume 3 05/26/21 list 0.00029180 (8) 0e+00
-4e-03
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Further Analysis & Take-Aways (1/4)

Near-exact image recovery via end-to-end NNs is possible
o “practical solution” to the inverse problem

10000 test samples Ground truth Ground truth (zoom) Reconstruction (zoom) Diff (zoom)
3.0e-05 A +
2e-03
2.5e-05 -
0e+00
2.0e-05 -
L
)
02: 1.5e-05 - & Ground truth Ground truth (zoom) Reconstruction (zoom) Diff (zoom)
y 8 2e-03
1.0e-05 A £
0e+00
5.0e-06 -

5.0e-05 1.0e-04 1.5e-04 2.0e-04
WCRMSE
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Further Analysis & Take-Aways (2/4)

. . . . model-based ! signal E data |
Only very few iterations of fwd. operator required - inversion | enhancement | consistency |
. . | : : iterate K = 5 times ||
S very different from classical solvers | | i |
~| FBP [ Unet 3y DC e
8.0e-04 1| ® train time
-®- ItNet (shared)
-0~ ItNet (not shared)
P
§ i ] / E\\\ —§~  UNeto FBP
* 1.0e-04 - S "'\\ N
8.0e-05 - ds
. o an Y 4 Y
S S 1
4.0e-05 A — > ———— =0z e ‘ -3 > d
0 1 2 3 4 5 6 8

# Forward Op. evaluations
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Further Analysis & Take-Aways (3/4)

Model-based knowledge and pre-training is key
o “Simple models, but trained well!”

UNet o FBP ItNet4 ItNet-post
1 T T
—— training — training : : —— training
— validation i — validation : : — validation
© — training - no init 1 1~
"ﬁ — validation - no init i i 8
107 10-3 1 & 1073 - I § =
15— 1
n
7 R
L 1V =
7 i IS £
= ! h ©
o 1 o
10-4 - 10~% 1074 1 : :
i |
1 1
1
1
1
l
10_5 R T T T T T 10_5 R T T T T T T 10_5 R T T T ‘ T T
0 100 200 300 400 0 100 200 300 400 500 0 200 400 600 800
epoch epoch epoch
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Further Analysis & Take-Aways (4/4)

# 1 User(Team) Created Mean Position
st {3 RobustAndStable & 4Nov.2021 13 |
. . 2nd & RobustAndStable & 1May 2021 28
ItNet is also SOTA for real-world CT image data
4th :: RobustAndStable & 28 April 2021 55
5th  £3iRIMforCT & 31July 2021 6.8

LoDoPaB-CT - Leuschner et al. 2021

validation samples Ground truth Ground truth (zoom) Reconstruction (zoom) Diff (zoom)

2e-01

0e+00

-2e-01

Diff (zoom)

SSIM

Ground truth

2e-01

0e+00

-2e-01

45 40 35 30 25

PSNR
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THANK YOU!

Official Challenge Report:

E. Sidky & X. Pan. Report on the AAPM deep-learning sparse-view CT
(DL-sparse-view CT) Grand Challenge. Med. Phys. (2022), arXiv:2109.09640

Our code:
https://github.com/Jmaces/aapm-ct-challenge

Find us on Y

@MartinGenzel (@Iguhring @jan maces (@MaximilianMarz





