Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning Martin Genzel Helmholtz-Zentrum Berlin (work done while at Utrecht University) Ingo Gühring TU Berlin (Machine Learning Group) Jan Macdonald TU Berlin (Institute of Mathematics) Maximilian März TU Berlin (Institute of Mathematics) 39th International Conference on Machine Learning Baltimore, Jul 17 – Jul 23, 2022 Given a forward operator $A \in \mathbb{R}^{m \times d}$ and corrupted measurements $y = Ax_0 + e$ with $\|e\|_2 \le \eta$, reconstruct the signal x_0 . Given a forward operator $A \in \mathbb{R}^{m \times d}$ and corrupted measurements $y = Ax_0 + e$ with $\|e\|_2 \le \eta$, reconstruct the signal x_0 . \hookrightarrow Often ill-posed due to undersampling ($m \ll d$) or ill-conditioned forward operator A Given a forward operator $A \in \mathbb{R}^{m \times d}$ and corrupted measurements $y = Ax_0 + e$ with $\|e\|_2 \le \eta$, reconstruct the signal x_0 . \hookrightarrow Often ill-posed due to undersampling ($m \ll d$) or ill-conditioned forward operator A Classical variational methods $$x_0 \approx \underset{x}{\operatorname{arg\,min}} \|y - Ax\|_2^2 + \lambda \cdot R(x)$$ Given a forward operator $A \in \mathbb{R}^{m \times d}$ and corrupted measurements $y = Ax_0 + e$ with $\|e\|_2 \le \eta$, reconstruct the signal x_0 . \hookrightarrow Often ill-posed due to undersampling ($m \ll d$) or ill-conditioned forward operator A Classical variational methods $$x_0 \approx \underset{x}{\operatorname{arg\,min}} \|y - Ax\|_2^2 + \lambda \cdot R(x)$$ Modern deep learning methods $$X_0 \approx \text{Net}[\hat{\theta}](y) \qquad \min_{\theta} \ \frac{1}{M} \sum_{i=1}^{M} \|\text{Net}[\theta](y^i) - x_0^i\|_2^2$$ "Infer knowledge directly from data $\{(y^i, x_0^i)\}_{i=1}^{M}$." ► Since 2016: Paradigm shift from sparsity-based regularization to deep learning [Arridge et al. 2019; Ongie et al. 2020] (post-processing, unrolling, gen. models, PnP, learned reg., DIP, ...) [Jin et al. 2017] - ► Since 2016: Paradigm shift from sparsity-based regularization to deep learning [Arridge et al. 2019; Ongie et al. 2020] (post-processing, unrolling, gen. models, PnP, learned reg., DIP, ...) - ► A lack of theoretical foundation has sparked a controversial debate about reliability [Antun et al. 2020] $$\|x_0 - \text{Net}(y)\|_2 \le \|x_0 - \text{Net}(Ax_0)\|_2 + \|\text{Net}(Ax_0) - \text{Net}(y)\|_2$$ Accuracy Robustness $y = Ax_0 + e$ with $||e||_2 \le \eta$ [Jin et al. 2017] - ► Since 2016: Paradigm shift from sparsity-based regularization to deep learning [Arridge et al. 2019; Ongie et al. 2020] (post-processing, unrolling, gen. models, PnP, learned reg., DIP, ...) - ► A lack of theoretical foundation has sparked a controversial debate about reliability [Antun et al. 2020] $$\|x_0 - \text{Net}(y)\|_2 \le \|x_0 - \text{Net}(Ax_0)\|_2 + \|\text{Net}(Ax_0) - \text{Net}(y)\|_2$$ Accuracy Robustness $$y = Ax_0 + e$$ with $\|e\|_2 \le \eta$ #### Optimistic results in Solving Inverse Problems With Deep Neural Networks – Robustness Included? Genzel, Macdonald, März [IEEE TPAMI 2022] - ► Since 2016: Paradigm shift from sparsity-based regularization to deep learning [Arridge et al. 2019; Ongie et al. 2020] (post-processing, unrolling, gen. models, PnP, learned reg., DIP, ...) - ► A lack of theoretical foundation has sparked a controversial debate about reliability [Antun et al. 2020] $$\|x_0 - \text{Net}(y)\|_2 \le \|x_0 - \text{Net}(Ax_0)\|_2 + \|\text{Net}(Ax_0) - \text{Net}(y)\|_2$$ Accuracy Robustness What happens at the noisefree limit $\eta = 0$? Can NNs produce near-perfect solutions, i.e., $\|x_0 - \text{Net}(Ax_0)\|_2 \approx 0$? #### Optimistic results in Solving Inverse Problems With Deep Neural Networks – Robustness Included? Genzel, Macdonald, März [IEEE TPAMI 2022] - Based on research by Emil Sidky et al. on sparse-view breast CT - Answer for post-processing by U-net: No! - ► Goal of AAPM Challenge: "The challenge seeks the data-driven methodology that provides the most accurate reconstruction of sparse-view CT data." - Based on research by Emil Sidky et al. on sparse-view breast CT - Answer for post-processing by U-net: No! - ► Goal of AAPM Challenge: "The challenge seeks the data-driven methodology that provides the most accurate reconstruction of sparse-view CT data." - ► Challenge dataset: M = 4000 pairs of - breast-phantom images (*d*=512x512) - noiseless sparse-view sinograms (128 views) - (sparse-view FBP images) - ► Evaluation by RMSE $(=\frac{1}{M}\sum_{i=1}^{M}\sqrt{\|x_0^i \hat{x}_0^i\|_2^2/d})$ - → TV minimization can solve the problem (RMSE ≈ 1e-6) - ► Timeline: Mar 17 Jun 1, 2021 - → Approx. 60 groups participated (25 in final phase) - ► Based on research by Emil Sidky et al. on sparse-view breast CT - Answer for post-processing by U-net: No! - ► Goal of AAPM Challenge: "The challenge seeks the data-driven methodology that provides the most accurate reconstruction of sparse-view CT data." - ► Challenge dataset: M = 4000 pairs of - breast-phantom images (*d*=512x512) - noiseless sparse-view sinograms (128 views) - (sparse-view FBP images) - ► Evaluation by RMSE $(=\frac{1}{M}\sum_{i=1}^{M}\sqrt{\|x_0^i \hat{x}_0^i\|_2^2/d})$ - → TV minimization can solve the problem (RMSE ≈ 1e-6) - ► Timeline: Mar 17 Jun 1, 2021 - → Approx. 60 groups participated (25 in final phase) - Based on research by Emil Sidky et al. on sparse-view breast CT - Answer for post-processing by U-net: No! - ► Goal of AAPM Challenge: "The challenge seeks the data-driven methodology that provides the most accurate reconstruction of sparse-view CT data." - ► Challenge dataset: M = 4000 pairs of - breast-phantom images (*d*=512x512) - noiseless sparse-view sinograms (128 views) - (sparse-view FBP images) - ► Evaluation by RMSE $(=\frac{1}{M}\sum_{i=1}^{M}\sqrt{\|x_0^i \hat{x}_0^i\|_2^2/d})$ - → TV minimization can solve the problem (RMSE ≈ 1e-6) - ► Timeline: Mar 17 Jun 1, 2021 - → Approx. 60 groups participated (25 in final phase) ▶ Step 1: Fully data-driven operator identification based on a parameterized fwd. model $A[\theta]$ $$\min_{\theta} \sum_{i} \|A[\theta] (x_0^i) - y^i\|_2^2$$ Phantom image x_0 ▶ Step 1: Fully data-driven operator identification based on a parameterized fwd. model $A[\theta]$ $\min_{\theta} \sum_{i} \|A[\theta](x_0^i) - y^i\|_2^2$ Deep-learning-style optimization (backprop/autodiff) ► Step 1: Fully data-driven operator identification based on a parameterized fwd. model $A[\theta]$ $$\min_{\theta} \sum_{i} \|A[\theta] (x_0^i) - y^i\|_2^2$$ Step 2: Pre-train a UNet as FBP-post-processor $$\min_{\theta} \sum_{i} \|x_0^i - [\mathsf{UNet}[\theta] \cdot \mathsf{FBP}](y^i)\|_2^2$$ Phantom image x_0 [Jin et al. 2017; Kang et al. 2017; ...] ▶ Step 1: Fully data-driven operator identification based on a parameterized fwd. model $A[\theta]$ $$\min_{\theta} \sum_{i} \|A[\theta](x_0^i) - y^i\|_2^2$$ $A[\theta]$? Sinogram y Phantom image x₀ Step 2: Pre-train a UNet as FBP-post-processor [Jin et al. 2017; Kang et al. 2017; ...] ICML 2022 4 ▶ Step 1: Fully data-driven operator identification based on a parameterized fwd. model $A[\theta]$ $$\min_{\theta} \sum_{i} \|A[\theta](x_0^i) - y^i\|_2^2$$ Phantom image **x**₀ - Step 2: Pre-train a UNet as FBP-post-processor - Step 3: Construct an iterative scheme (= ItNet) [Jin et al. 2017; Kang et al. 2017; ...] [Aggarwal et al. 2018; Schlemper et al. 2019; Hammernik, Schlemper, et al. 2021; ...] ICML 2022 4 ▶ Step 1: Fully data-driven operator identification based on a parameterized fwd. model $A[\theta]$ $$\min_{\theta} \sum_{i} \|A[\theta](x_0^i) - y^i\|_2^2$$ Phantom image x_0 - Step 2: Pre-train a UNet as FBP-post-processor - Step 3: Construct an iterative scheme (= ItNet) [Aggarwal et al. 2018; Schlemper et al. 2019; Hammernik, Schlemper, et al. 2021; ...] [Jin et al. 2017; Kang et al. 2017; ...] # Challenge Results - Team: robust-and-stable | | Baselines | | Our Network Variants | | Comparison Networks | | |------|------------|---------|----------------------|---------|---------------------|---------| | | Chall. FBP | Our FBP | U-net | ItNet | Tiramisu | LPD | | RMSE | 5.72e-3 | 3.40e-3 | 3.50e-4 | 6.37e-6 | 2.24e-4 | 1.24e-4 | [Jégou et al. 2017; Adler & Öktem 2018] | | | | Results | | | | | |---|------------|---------|--------------------|-------------------|----------------|--|--| | # | User | Entries | Date of Last Entry | Team Name | RMSE ▲ | | | | 1 | Max | 3 | 05/31/21 | robust-and-stable | 0.00000637 (1) | | | | 2 | TUM | 4 | 05/31/21 | YM & RH | 0.00003989 (2) | | | | 3 | cebel67 | 4 | 05/31/21 | DEEP_UL | 0.00012923 (3) | | | | 4 | deepx | 3 | 05/31/21 | | 0.00015935 (4) | | | | 5 | Haimiao | 4 | 05/29/21 | HBB | 0.00018119 (5) | | | | 6 | HKim | 2 | 05/31/21 | MIR | 0.00026678 (6) | | | | 7 | luke199629 | 5 | 05/31/21 | | 0.00028064 (7) | | | | 8 | yume | 3 | 05/26/21 | list | 0.00029180 (8) | | | Tiramisu (RMSE = 2.75e-04) # Further Analysis & Take-Aways (1/4) #### Near-exact image recovery via end-to-end NNs is possible → "practical solution" to the inverse problem ICML 2022 6 # Further Analysis & Take-Aways (2/4) # Further Analysis & Take-Aways (3/4) Model-based knowledge and pre-training is key → "Simple models, but trained well!" # Further Analysis & Take-Aways (4/4) #### ItNet is also SOTA for real-world CT image data | # 1 | User (Team) | N | Created | ₩ | Mean Position | |-----|-------------------|---|---------------|---|---------------| | 1st | RobustAndStable 🚣 | | 4 Nov. 2021 | | 1.3 | | 2nd | RobustAndStable 🚉 | | 1 May 2021 | | 2.8 | | 2nd | | | 19 Aug. 2021 | | 2.8 | | 4th | RobustAndStable 🐣 | | 28 April 2021 | | 5.5 | | 5th | iRIMforCT 🚣 | | 31 July 2021 | | 6.8 | **LoDoPaB-CT** – Leuschner et al. 2021 # THANK YOU! #### Official Challenge Report: E. Sidky & X. Pan. Report on the AAPM deep-learning sparse-view CT (DL-sparse-view CT) Grand Challenge. *Med. Phys.* (2022), arXiv:2109.09640 #### Our code: https://github.com/jmaces/aapm-ct-challenge #### Find us on 🍠 @MartinGenzel @Iguhring @jan_maces @MaximilianMarz