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Deep Neural Networks are vulnerable to adversarial examples.
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 Adversarial training (AT), one of the most effective defenses, can be 

formulated as a min-max optimization problem:

 Robust overfitting: the robust accuracy on 

test data will continue to degrade with 

further training. The underlying reasons 

for this are still not completely understood.
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Data Distribution Perspective

 The data distribution of overfitted AT is mismatched with that of non-overfit AT.

 Q1: if we suppress the large-loss data in overfitted AT to align the data distribution of non-

overfit AT, will it eliminate robust overfitting?

 Q2: if we suppress the small-loss data in overfitted AT that does not match the strength of 

adversary, will it eliminate robust overfitting?
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 Removing large-loss data: aligning to the data distribution of non-overfit AT is invalid.

 Removing small-loss data: identifying that some small-loss data cause robust overfitting.

 Explanation: network becomes more robust as the adversarial training progresses, 

making some generated adversarial data relatively less aggressive, and when their loss 

drops to a certain level, these adversarial data eventually lead to robust overfitting.
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Causes of Robust Overfitting
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 Learn large-loss data as usual.

 Adopt additional measure to increase 

the loss of the small-loss data.

 Versatile: loss adjustment strategy 𝑆 and 

minimum loss condition ℓ𝑚𝑖𝑛 can be 

flexibly implemented depend on base 

AT algorithm.

MLCAT Prototype

Turning waste into treasure



 Loss Scaling (MLCATLS): create a corrected loss from original loss and then 

trains the network based on the corrected loss.

 Weight Perturbation (MLCATWP): generate perturbation to the model weights, 

and trains the network on the perturbative parameters.
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Two Realizations of MLCAT
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