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Introduction

= Adversarial training (AT), one of the most effective defenses, can be

formulated as a min-max optimization problem:
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= Robust overfitting: the robust accuracy on
test data will continue to degrade with
further training. The underlying reasons

for this are still not completely understood.
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[1] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

[2] Rice, L., Wong, E., and Kolter, J. Overfitting in adversarially robust deep learning. In ICML, 2020.
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= The data distribution of overfitted AT is mismatched with that of non-overfit AT.

= QL. if we suppress the large-loss data in overfitted AT to align the data distribution of non-
overfit AT, will it eliminate robust overfitting?

= Q2: 1f we suppress the small-loss data in overfitted AT that does not match the strength of
adversary, will it eliminate robust overfitting?
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Causes of Robust Overfitting
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Removing large-loss data: aligning to the data distribution of non-overfit AT is invalid.
Removing small-loss data: identifying that some small-loss data cause robust overfitting.
Explanation: network becomes more robust as the adversarial training progresses,
making some generated adversarial data relatively less aggressive, and when their loss
drops to a certain level, these adversarial data eventually lead to robust overfitting.
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Algorithm 1 MLCAT-prototype (in a mini-batch).
Learn Iarge'IOSS data as usual. Require: base adversarial training algorithm A, optimizer
o ] O, network f,,, training data D = {(x;, y;)},, mini-batch
Adopt additional measure to increase B, batch size m, minimum loss conditions ¢, for A, loss
adjustment strategy S
the loss of the small-loss data. I: Sample a mini-batch B = {(x;, i)}, from D

B’ = A.inner_maximization( f,,, B)
. {fl}:zl - f(fw-.- B’)
g — 0 # 1nitialize loss accumulator

2:
Versatile: loss adjustment strategy S and i
5:[ffori=1,...,mdo
6.
7
8

minimum loss condition 4,,,;,, can be if¢, > ¢ then

i i g =Ll +1{;
flexibly implemented depend on base | else
9: ff — S(fw, X!, Cmin) # adjust loss
AT alg()rithm. 10: {g =L{g + {?;S # accumulate adjusted loss
11:| end if
12: | end for
Tu rnl ng Wa to t easu e 13: {g «— L@ /m # average accumulated loss

-1 : 1~ 14: V,, « A.outer_minimization( f,,, {5’)
15: O.step(Vy,)
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= Loss Scaling (MLCATy): create a corrected loss from original loss and then

trains the network based on the corrected loss.

818 = ff;!ﬂ - = Cmin

= Weight Perturbation (MLCATyp): generate perturbation to the model weights,

and trains the network on the perturbative parameters.

V=V ) 1l < bin)

ffs = f(fw+v(x:)= Vi)

[1] Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Improving adversarial robustness requires revisiting misclassifed examples. In ICLR, 2020.
[2] Wu, D., Xia, S., and Wang, Y. Adversarial Weight Perturbation Helps Robust Generalization. In NeurIPS, 2020. 8
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Table 1. Test robustness (%) on CIFAR10. We omit the standard deviations of 5 runs as they are very small (< 0.6%).

Network Threat Model Method PGD-20 AA
Best Last Daft Best Last Dnft
AT 5220 4443 -7.86 4799 4208 -591
Leo MLCAT] g 56.90 56.87 -0.03 28.12 2693 -1.19
PreAct ResNet-18 MLCATwp 58.48 57.65 -0.83 50.70 5032 -0.38
AT 6927 6586 -3.41 67.70 6464 -3.06
L, MLCAT] g 73.16 7248 -0.68 497 48.94 -0.76
MLCATwp 7438 73.86 -0.52 7046 70.15 -0.31
AT 5557 4737 -8.20 52.13  46.09 -6.04
Lo MLCAT; g 64.73 6394 -0.79 35.00 3451 -049
Wide ResNet-34-10 MLCATwp 62.50 6191 -0.59 54.65 54.56 -0.09
AT 71.57 6999 -1.58 TJ044 6892 -1.52
L, MLCAT; ¢ 75.05 7497 -0.08 55.31 55.11 -0.20

MLCATwp 7692 7655 -0.37 7435 7397 -0.38
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Table 3. Test robustness (%) on CIFAR100. We omit the standard deviations of 5 runs as they are very small (< 0.6%).

Network Threat Model Method PGD-20 AA
Best Last Datt Best Last Diff
AT 2801 2039 -7.62 23.61 18.41 -5.20
Lea MLCAT] g 20,09 18.14 -1.95 13.41 11.35 -2.06
PreAct ResNet-18 MLCATwp 31.27 30.57 -0.70 25.66 25.28 -0.38
AT 4138 3534 -6.04 37.94 3358 -436
L MLCAT g 31.23  30.80 -0.43 2206 21.72 -0.34
MLCATwp 4549 44.84 -0.65 41.22 41.15 -0.07
AT 30.74 2489 585 2698 23.07 -391
Lo MLCAT] g 2286 2218 -0.68 14.61 14.05 -0.56
Wide ResNet-34-10 MLCATwp 3497 34.64 -0.33 2949 2925 -0.24
AT 4412 41.29 -2.83 41.39 3934 -2.05
L, MLCAT ¢ 34.09 3366 -0.43 2506 2431 -0.75

MLCATwp 50.17 49.51 -0.66 46.05 45.77 -0.28
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