Understanding Robust Overfitting of Adversarial Training and Beyond Chaojian Yu¹, Bo Han², Li Shen³, Jun Yu⁴, Chen Gong⁵, Mingming Gong⁶, Tongliang Liu¹ ¹TML Lab, Sydney AI Centre, The University of Sydney ²Department of Computer Science, Hong Kong Baptist University ³JD Explore Academy ⁴Department of Automation, University of Science and Technology of China ⁵School of Computer Science and Engineering, Nanjing University of Science and Technology ⁶School of Mathematics and Statistics, The University of Melbourne Deep Neural Networks are vulnerable to adversarial examples. Adversarial training (AT), one of the most effective defenses, can be formulated as a min-max optimization problem: $$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \max_{||x_{i}'-x_{i}||_{p} \le \epsilon} \ell(f_{w}(x_{i}'), y_{i})$$ Robust overfitting: the robust accuracy on test data will continue to degrade with further training. The underlying reasons for this are still not completely understood. ^[1] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant to adversarial attacks. In ICLR, 2018. #### **Data Distribution Perspective** - The data distribution of overfitted AT is mismatched with that of non-overfit AT. - Q1: if we suppress the large-loss data in overfitted AT to align the data distribution of non-overfit AT, will it eliminate robust overfitting? - Q2: if we suppress the small-loss data in overfitted AT that does not match the strength of adversary, will it eliminate robust overfitting? #### **Causes of Robust Overfitting** - Removing large-loss data: aligning to the data distribution of non-overfit AT is invalid. - Removing small-loss data: identifying that some small-loss data cause robust overfitting. - Explanation: network becomes more robust as the adversarial training progresses, making some generated adversarial data relatively less aggressive, and when their loss drops to a certain level, these adversarial data eventually lead to robust overfitting. ### **MLCAT Prototype** - Learn large-loss data as usual. - Adopt additional measure to increase the loss of the small-loss data. - Versatile: loss adjustment strategy S and minimum loss condition ℓ_{min} can be flexibly implemented depend on base AT algorithm. # Turning waste into treasure #### **Algorithm 1** MLCAT-prototype (in a mini-batch). **Require:** base adversarial training algorithm \mathcal{A} , optimizer \mathfrak{D} , network f_w , training data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, mini-batch \mathcal{B} , batch size m, minimum loss conditions ℓ_{min} for \mathcal{A} , loss adjustment strategy \mathcal{S} ``` 1: Sample a mini-batch \mathcal{B} = \{(x_i, y_i)\}_{i=1}^m from \mathcal{D} 2: \mathcal{B}' = \mathcal{A}.inner_maximization(f_w, \mathcal{B}) 3: \{\ell_i\}_{i=1}^m \leftarrow \ell(f_w, \mathcal{B}') # initialize loss accumulator 4: \ell_{\mathcal{B}'} \leftarrow 0 5: for i = 1, ..., m do if \ell_i \geq \ell_{min} then \ell_{\mathcal{B}'} = \ell_{\mathcal{B}'} + \ell_i else \ell_i^{\mathcal{S}} \leftarrow \mathcal{S}(f_w, x_i', \ell_{min}) # adjust loss \ell_{\mathcal{B}'} = \ell_{\mathcal{B}'} + \ell_i^{\mathcal{S}} # accumulate adjusted loss end if 12: end for 13: \ell_{\mathcal{B}'} \leftarrow \ell_{\mathcal{B}'}/m # average accumulated loss 14: \nabla_w \leftarrow \mathcal{A}.\text{outer_minimization}(f_w, \ell_{\mathcal{B}'}) 15: \mathfrak{D}.step(\nabla_w) ``` #### **Two Realizations of MLCAT** ■ Loss Scaling (MLCAT_{LS}): create a corrected loss from original loss and then trains the network based on the corrected loss. $$\ell_i^{\mathcal{S}} = \frac{\ell_{min}}{\ell_i} \cdot \ell_i = \ell_{min}$$ • Weight Perturbation (MLCAT $_{WP}$): generate perturbation to the model weights, and trains the network on the perturbative parameters. $$v = \nabla_w \sum_i \mathbb{1}(\ell_i \le \ell_{min}) \ \ell_i$$ $$\ell_i^{\mathcal{S}} = \ell(f_{w+v}(x_i'), y_i)$$ Table 1. Test robustness (%) on CIFAR10. We omit the standard deviations of 5 runs as they are very small (< 0.6%). | Network | Threat Model | Method | PGD-20 | | | AA | | | |-------------------|--------------|--|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------------------| | | | | Best | Last | Diff | Best | Last | Diff | | PreAct ResNet-18 | L_{∞} | AT
MLCAT _{LS}
MLCAT _{WP} | 52.29
56.90
58.48 | 44.43
56.87
57.65 | -7.86
- 0.03
-0.83 | 47.99
28.12
50.70 | 42.08
26.93
50.32 | -5.91
-1.19
-0.38 | | | L_2 | AT
MLCAT _{LS}
MLCAT _{WP} | 69.27
73.16
74.38 | 65.86
72.48
73.86 | -3.41
-0.68
- 0.52 | 67.70
49.7
70.46 | 64.64
48.94
70.15 | -3.06
-0.76
- 0.31 | | Wide ResNet-34-10 | L_{∞} | AT
MLCAT _{LS}
MLCAT _{WP} | 55.57
64.73
62.50 | 47.37
63.94
61.91 | -8.20
-0.79
- 0.59 | 52.13
35.00
54.65 | 46.09
34.51
54.56 | -6.04
-0.49
- 0.09 | | | L_2 | AT
MLCAT _{LS}
MLCAT _{WP} | 71.57
75.05
76.92 | 69.99
74.97
76.55 | -1.58
- 0.08
-0.37 | 70.44
55.31
74.35 | 68.92
55.11
73.97 | -1.52
- 0.20
-0.38 | Table 3. Test robustness (%) on CIFAR100. We omit the standard deviations of 5 runs as they are very small (< 0.6%). | Network | Threat Model | Method | PGD-20 | | | AA | | | |-------------------|--------------|--|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|---------------------------------| | | | | Best | Last | Diff | Best | Last | Diff | | PreAct ResNet-18 | L_{∞} | AT
MLCAT _{LS}
MLCAT _{WP} | 28.01
20.09
31.27 | 20.39
18.14
30.57 | -7.62
-1.95
- 0.70 | 23.61
13.41
25.66 | 18.41
11.35
25.28 | -5.20
-2.06
-0.38 | | | L_2 | AT
MLCAT _{LS}
MLCAT _{WP} | 41.38
31.23
45.49 | 35.34
30.80
44.84 | -6.04
- 0.43
-0.65 | 37.94
22.06
41.22 | 33.58
21.72
41.15 | -4.36
-0.34
- 0.07 | | Wide ResNet-34-10 | L_{∞} | AT
MLCAT _{LS}
MLCAT _{WP} | 30.74
22.86
34.97 | 24.89
22.18
34.64 | -5.85
-0.68
-0.33 | 26.98
14.61
29.49 | 23.07
14.05
29.25 | -3.91
-0.56
-0.24 | | | L_2 | AT
MLCAT _{LS}
MLCAT _{WP} | 44.12
34.09
50.17 | 41.29
33.66
49.51 | -2.83
- 0.43
-0.66 | 41.39
25.06
46.05 | 39.34
24.31
45.77 | -2.05
-0.75
-0.28 |