

Understanding Robust Overfitting of Adversarial Training and Beyond

Chaojian Yu¹, Bo Han², Li Shen³, Jun Yu⁴, Chen Gong⁵, Mingming Gong⁶, Tongliang Liu¹

¹TML Lab, Sydney AI Centre, The University of Sydney

²Department of Computer Science, Hong Kong Baptist University

³JD Explore Academy

⁴Department of Automation, University of Science and Technology of China ⁵School of Computer Science and Engineering, Nanjing University of Science and Technology ⁶School of Mathematics and Statistics, The University of Melbourne

Deep Neural Networks are vulnerable to adversarial examples.

Adversarial training (AT), one of the most effective defenses, can be formulated as a min-max optimization problem:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \max_{||x_{i}'-x_{i}||_{p} \le \epsilon} \ell(f_{w}(x_{i}'), y_{i})$$

Robust overfitting: the robust accuracy on test data will continue to degrade with further training. The underlying reasons for this are still not completely understood.

^[1] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Data Distribution Perspective

- The data distribution of overfitted AT is mismatched with that of non-overfit AT.
- Q1: if we suppress the large-loss data in overfitted AT to align the data distribution of non-overfit AT, will it eliminate robust overfitting?
- Q2: if we suppress the small-loss data in overfitted AT that does not match the strength of adversary, will it eliminate robust overfitting?

Causes of Robust Overfitting

- Removing large-loss data: aligning to the data distribution of non-overfit AT is invalid.
- Removing small-loss data: identifying that some small-loss data cause robust overfitting.
- Explanation: network becomes more robust as the adversarial training progresses, making some generated adversarial data relatively less aggressive, and when their loss drops to a certain level, these adversarial data eventually lead to robust overfitting.

MLCAT Prototype

- Learn large-loss data as usual.
- Adopt additional measure to increase the loss of the small-loss data.
- Versatile: loss adjustment strategy S and minimum loss condition ℓ_{min} can be flexibly implemented depend on base AT algorithm.

Turning waste into treasure

Algorithm 1 MLCAT-prototype (in a mini-batch).

Require: base adversarial training algorithm \mathcal{A} , optimizer \mathfrak{D} , network f_w , training data $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$, mini-batch \mathcal{B} , batch size m, minimum loss conditions ℓ_{min} for \mathcal{A} , loss adjustment strategy \mathcal{S}

```
1: Sample a mini-batch \mathcal{B} = \{(x_i, y_i)\}_{i=1}^m from \mathcal{D}
 2: \mathcal{B}' = \mathcal{A}.inner\_maximization(f_w, \mathcal{B})
 3: \{\ell_i\}_{i=1}^m \leftarrow \ell(f_w, \mathcal{B}')
                                                       # initialize loss accumulator
 4: \ell_{\mathcal{B}'} \leftarrow 0
 5: for i = 1, ..., m do
          if \ell_i \geq \ell_{min} then
                \ell_{\mathcal{B}'} = \ell_{\mathcal{B}'} + \ell_i
           else
               \ell_i^{\mathcal{S}} \leftarrow \mathcal{S}(f_w, x_i', \ell_{min})
                                                                                     # adjust loss
             \ell_{\mathcal{B}'} = \ell_{\mathcal{B}'} + \ell_i^{\mathcal{S}}
                                                          # accumulate adjusted loss
           end if
12: end for
13: \ell_{\mathcal{B}'} \leftarrow \ell_{\mathcal{B}'}/m
                                                         # average accumulated loss
14: \nabla_w \leftarrow \mathcal{A}.\text{outer\_minimization}(f_w, \ell_{\mathcal{B}'})
15: \mathfrak{D}.step(\nabla_w)
```

Two Realizations of MLCAT

■ Loss Scaling (MLCAT_{LS}): create a corrected loss from original loss and then trains the network based on the corrected loss.

$$\ell_i^{\mathcal{S}} = \frac{\ell_{min}}{\ell_i} \cdot \ell_i = \ell_{min}$$

• Weight Perturbation (MLCAT $_{WP}$): generate perturbation to the model weights, and trains the network on the perturbative parameters.

$$v = \nabla_w \sum_i \mathbb{1}(\ell_i \le \ell_{min}) \ \ell_i$$

$$\ell_i^{\mathcal{S}} = \ell(f_{w+v}(x_i'), y_i)$$

Table 1. Test robustness (%) on CIFAR10. We omit the standard deviations of 5 runs as they are very small (< 0.6%).

Network	Threat Model	Method	PGD-20			AA		
			Best	Last	Diff	Best	Last	Diff
PreAct ResNet-18	L_{∞}	AT MLCAT _{LS} MLCAT _{WP}	52.29 56.90 58.48	44.43 56.87 57.65	-7.86 - 0.03 -0.83	47.99 28.12 50.70	42.08 26.93 50.32	-5.91 -1.19 -0.38
	L_2	AT MLCAT _{LS} MLCAT _{WP}	69.27 73.16 74.38	65.86 72.48 73.86	-3.41 -0.68 - 0.52	67.70 49.7 70.46	64.64 48.94 70.15	-3.06 -0.76 - 0.31
Wide ResNet-34-10	L_{∞}	AT MLCAT _{LS} MLCAT _{WP}	55.57 64.73 62.50	47.37 63.94 61.91	-8.20 -0.79 - 0.59	52.13 35.00 54.65	46.09 34.51 54.56	-6.04 -0.49 - 0.09
	L_2	AT MLCAT _{LS} MLCAT _{WP}	71.57 75.05 76.92	69.99 74.97 76.55	-1.58 - 0.08 -0.37	70.44 55.31 74.35	68.92 55.11 73.97	-1.52 - 0.20 -0.38

Table 3. Test robustness (%) on CIFAR100. We omit the standard deviations of 5 runs as they are very small (< 0.6%).

Network	Threat Model	Method	PGD-20			AA		
			Best	Last	Diff	Best	Last	Diff
PreAct ResNet-18	L_{∞}	AT MLCAT _{LS} MLCAT _{WP}	28.01 20.09 31.27	20.39 18.14 30.57	-7.62 -1.95 - 0.70	23.61 13.41 25.66	18.41 11.35 25.28	-5.20 -2.06 -0.38
	L_2	AT MLCAT _{LS} MLCAT _{WP}	41.38 31.23 45.49	35.34 30.80 44.84	-6.04 - 0.43 -0.65	37.94 22.06 41.22	33.58 21.72 41.15	-4.36 -0.34 - 0.07
Wide ResNet-34-10	L_{∞}	AT MLCAT _{LS} MLCAT _{WP}	30.74 22.86 34.97	24.89 22.18 34.64	-5.85 -0.68 -0.33	26.98 14.61 29.49	23.07 14.05 29.25	-3.91 -0.56 -0.24
	L_2	AT MLCAT _{LS} MLCAT _{WP}	44.12 34.09 50.17	41.29 33.66 49.51	-2.83 - 0.43 -0.66	41.39 25.06 46.05	39.34 24.31 45.77	-2.05 -0.75 -0.28