

Ripple Attention for Visual Perception with Sub-quadratic Complexity

Lin Zheng, Huijie Pan, Lingpeng Kong

Vision Transformers

Attention Mechanism Attn $(\mathbf{q}_n, \{\mathbf{k}_m\}, \{\mathbf{v}_m\}) = \sum_{m} \frac{\exp(\mathbf{q}_n^{\top} \mathbf{k}_m)}{\sum_{m'} \exp(\mathbf{q}_n^{\top} \mathbf{k}_{m'})} \mathbf{v}_m^{\top}$ Key 1 Key 2 Key 3 Query Output Value 1 Value 2 Value 3

Problems

X Scattered visual context:

• Flattening 2D images to 1D sequences undermines the inherent local correlations of images, which often bear important visual clues.

X Quadratic time/space complexity:

• Prohibitive to process higher-resolution images or smaller patch sizes.

Ripple Attention

- We propose ripple attention, an efficient mechanism that
 - incorporates the notion of spatial vicinity into the transformer, and
 - runs with sub-quadratic complexity.
- In ripple attention, contributions of different patches to a query are reweighted with respect to their spatial distances in the 2D space.
- Built upon linearized attention, we develop a dynamic programming algorithm to execute ripple attention in linear observed time.

Linearized Attention

 The key idea of linearization is using dot-product of feature maps to approximate the exponential kernels:

$$\kappa(\mathbf{x}, \mathbf{y}) \coloneqq \exp(\mathbf{x}^{\top} \mathbf{y}) \approx \phi(\mathbf{x})^{\top} \phi(\mathbf{y}), \quad \phi : \mathbb{R}^d \to \mathbb{R}^D$$

• Plugging in such approximation yields Linearized Attention (LA):

$$\sum_{m} \frac{\exp\left(\mathbf{q}_{n}^{\top} \mathbf{k}_{m}\right)}{\sum_{m'} \exp\left(\mathbf{q}_{n}^{\top} \mathbf{k}_{m'}\right)} \mathbf{v}_{m}^{\top} \approx \sum_{m} \frac{\phi\left(\mathbf{q}_{n}\right)^{\top} \phi\left(\mathbf{k}_{m}\right) \mathbf{v}_{m}^{\top}}{\sum_{m'} \phi\left(\mathbf{q}_{n}\right)^{\top} \phi\left(\mathbf{k}_{m'}\right)} \coloneqq \operatorname{LA}\left(\mathbf{q}_{n}, \left\{\mathbf{k}_{m}\right\}, \left\{\mathbf{v}_{m}\right\}\right)$$

Linearized Attention

- LA achieves linear complexity due to the re-order of computation.
- Reduce complexity from O(MN) to O(M+N).

$$\sum_{m} \frac{\phi\left(\mathbf{q}_{n}\right)^{\top} \phi\left(\mathbf{k}_{m}\right) \mathbf{v}_{m}^{\top}}{\sum_{m'} \phi\left(\mathbf{q}_{n}\right)^{\top} \phi\left(\mathbf{k}_{m'}\right)} = \frac{\phi\left(\mathbf{q}_{n}\right)^{\top} \sum_{m=1}^{M} \phi\left(\mathbf{k}_{m}\right) \otimes \mathbf{v}_{m}}{\phi\left(\mathbf{q}_{n}\right)^{\top} \sum_{m'=1}^{M} \phi\left(\mathbf{k}_{m'}\right)}$$

Vanilla softmax attention

Linearized attention

Reformulation with Vicinal Groups

• We partition the grid $H \times W$ into R+1 vicinal groups $\mathcal{N}_0(i,j), ..., \mathcal{N}_r(i,j), \mathcal{N}_R(i,j)$ according to a reference index (i,j), where

$$\max(|m-i|, |n-j|) = r, \quad \forall (m,n) \in \mathcal{N}_r(i,j)$$

- The vicinal group reflects the spatial vicinity for each index.
- The linearized attention can be expressed as sum over individual vicinal groups:

$$\frac{\phi\left(\mathbf{q}_{ij}\right)^{\top}\sum_{r=0}^{R}\sum_{(m,n)\in\mathcal{N}_{r}(i,j)}\phi\left(\mathbf{k}_{mn}\right)\otimes\mathbf{v}_{mn}}{\phi\left(\mathbf{q}_{ij}\right)^{\top}\sum_{r=0}^{R}\sum_{(m',n')\in\mathcal{N}_{r}(i,j)}\phi\left(\mathbf{k}_{m'n'}\right)}$$

- We associate each vicinal group with a scalar $\alpha_r(i,j)$
 - to **reweight the contribution** from different groups according to their relative distances.

RippleAttn
$$(\mathbf{q}_{ij}, {\mathbf{k}_{mn}}, {\mathbf{v}_{mn}}) := \frac{\phi(\mathbf{q}_{ij})^{\top} \sum_{r=0}^{R} \alpha_{r}(i, j) \sum_{(m, n) \in \mathcal{N}_{r}(i, j)} \phi(\mathbf{k}_{mn}) \otimes \mathbf{v}_{mn}}{\phi(\mathbf{q}_{ij})^{\top} \sum_{r=0}^{R} \alpha_{r}(i, j) \sum_{(m', n') \in \mathcal{N}_{r}(i, j)} \phi(\mathbf{k}_{m'n'})}$$

- The weighting scheme $\{\alpha_r(i,j)\}$ is defined via **stick breaking transform**,
 - promotes local correlations but still captures long-range dependencies.

Initialize a sequence of scalars $s_r \in (0,1) \quad \forall r = 1, \ldots, R;$

Set
$$\alpha_r = \begin{cases} s_1, & \text{if } r = 0\\ s_{r+1} \prod_{r' \le r} (1 - s_{r'}), & \text{otherwise} \end{cases}$$

We have $\sup \alpha_r \ge \sup \alpha_{r'}$ if r < r'.

Efficient Computation via Dynamic Programming

- A naïve implementation explicitly sum over each vicinal group for each query, still requiring quadratic complexity.
- Thanks to the additive structure in linearized attention, we present a dynamic programming algorithm to achieve sub-quadratic complexity.

Efficient Computation via Dynamic Programming

• We maintain a summed-area table (SAT), storing the **prefix sum** of all tokens in image I above and to the left of each index (i, j),

$$\mathbf{S}(i,j) = \sum_{i'=1}^{i} \sum_{j'=1}^{j} \mathbf{I}(i',j')$$

• The sum over any window can then be retrieved in constant time:

$$\mathcal{W}(i,j,r) \coloneqq \mathbf{S}(i+r,j+r) - \mathbf{S}(i-r-1,j+r) - \mathbf{S}(i+r,j-r-1) + \mathbf{S}(i-r-1,j-r-1)$$

Efficient Computation via Dynamic Programming

 The sum over vicinal groups in ripple attention can also be computed in constant time:

$$\sum_{(m,n)\in\mathcal{N}_r(i,j)} \phi(\mathbf{k}_{mn}) \otimes \mathbf{v}_{mn} = \mathcal{W}_1(i,j,r) - \mathcal{W}_1(i,j,r-1)$$

$$\sum_{(m,n)\in\mathcal{N}_r(i,j)} \phi(\mathbf{k}_{mn}) = \mathcal{W}_2(i,j,r) - \mathcal{W}_2(i,j,r-1)$$

$$\text{RippleAttn}\left(\mathbf{q}_{ij}, \{\mathbf{k}_{mn}\}, \{\mathbf{v}_{mn}\}\right) = \frac{\phi\left(\mathbf{q}_{ij}\right)^{\top} \sum_{r=0}^{R} \alpha_r(i,j) \left(\mathcal{W}_1(i,j,r) - \mathcal{W}_1(i,j,r-1)\right)}{\phi\left(\mathbf{q}_{ij}\right)^{\top} \sum_{r=0}^{R} \alpha_r(i,j) \left(\mathcal{W}_2(i,j,r) - \mathcal{W}_2(i,j,r-1)\right)}$$

Experiments: Image Classification with ViTs

- Ripple improves Linearized Attention (LA) and outperforms conventional quadratic attention even without positional encodings.
- It can be considered as an approach to incorporating relative positional information:
 - outperforms previous baselines that try to incorporate relative positional information into LA.

Image classification results on ImageNet1k dataset.

Model	# Params	Top-1 Acc.	Top-5 Acc.					
Models with quadratic complexity								
DEIT	5.72M	72.20	91.10					
CONVIT (d'Ascoli et al., 2021)	5.72M	73.11	91.71					
Models with sub-quadratic complexity								
DEIT-LA	5.76M	70.67	90.16					
DEIT-LA + SINCSPE (Liutkus et al., 2021)	5.84M	67.32	88.14					
DEIT-LA + CONVSPE (Liutkus et al., 2021)	6.69M	67.64	88.40					
DEIT-LA + ROPE (Su et al., 2021)	5.76M	71.19	90.48					
PERMUTEFORMER (Chen, 2021)	5.76M	71.42	90.51					
RIPPLE	5.78M	73.02	91.56					

Image classification results on CIFAR-100 dataset.

Madal		w/ APE			w/o APE	
Model	# Params	Top-1 Acc.	Top-5 Acc.	# Params	Top-1 Acc.	Top-5 Acc.
DEIT-LA	5.42M	67.00	88.57	5.36M	54.04	79.66
DEIT	5.42M	67.87	89.71	5.36M	53.64	80.30
CONVIT	5.42M	74.34	92.87	5.36M	73.88	92.20
RIPPLE	5.47M	73.94	92.37	5.42M	72.94	91.86

Experiments: Object Detection

- Ripple gives clear performance boost over LA on object detection.
- It also achieves better results than baselines on detecting **small** scale objects, which might be due to the promoted local correlations.

Object detection on COCO benchmark.

Model	# Params GFLOPs	Inference	50 epochs				108 epochs				
		GFLOPS	time(s)	AP	APs	АРм	AP _L	AP	APs	АРм	APL
SMCA	41.5M	88					59.1 4				
SMCA-LA	41.7M	79	0.062	39.1	19.8	42.8	56.5	41.1	22.0	44.5	59.0
SMCA-RIPPLE	41.8M	80	0.065	40.5	22.1	44.1	57.7 4	12.3	23.2	45.6	60.0

Experiments: Efficiency

• Ripple attention (w/ dynamic programming) scales better to higherresolution images with lower computational costs.

Running time

Memory consumption

Thanks!