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Problems

X Scattered visual context:

* Flattening 2D images to 1D sequences undermines the inherent local
correlations of images, which often bear important visual clues.

X Quadratic time/space complexity:
* Prohibitive to process higher-resolution images or smaller patch sizes.



Ripple Attention .

* We propose ripple attention, an efficient mechanism that
* incorporates the notion of spatial vicinity into the transformer, and
* runs with sub-quadratic complexity.

* In ripple attention, contributions of different patches to a query are
reweighted with respect to their spatial distances in the 2D space.

* Built upon linearized attention, we develop a dynamic programming
algorithm to execute ripple attention in linear observed time.



Linearized Attention

* The key idea of linearization is using dot-product of feature maps to
approximate the exponential kernels:

k(x,y) =exp(x'y) = ¢(x) ¢(y), ¢:R?—R"

* Plugging in such approximation yields Linearized Attention (LA):
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Linearized Attention

* LA achieves linear complexity due to the re-order of computation.
* Reduce complexity from O(MN) to O(M + N).
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Reformulation with Vicinal Groups -

* We partition the grid H X W into R 4+ 1 vicinal groups
Ny(i,j), ..., V,.(i,j), N (i, j) according to a reference index (i, j), where

max(|m —il, |n — j[) =r, V(m,n) € N:.(i, )
* The vicinal group reflects the spatial vicinity for each index.

* The linearized attention can be expressed as sum over individual vicinal
groups:
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Reweighting Vicinal Groups -

 We associate each vicinal group with a scalar a,.(i, j)

* to reweight the contribution from different groups according to their relative
distances.
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RippleAttn (qij, {Kpmn}, {an}) -

* The weighting scheme {«,-(i, j)} is defined via stick breaking transform,
e promotes local correlations but still captures long-range dependencies.

S1 1—s1
Initialize a sequence of scalars s, € (0,1) Vr=1,..., R; [W/ l
- QT:{Sh =0 o S9 1—s9 |
Sr41 [ [<, (1 = 8p7),  otherwise \04/1/ 54 | — s
We have sup a, > sup a,- if r < r’. I )
—



Efficient Computation via Dynamic Programming

* A naive implementation explicitly sum over each vicinal group for each
query, still requiring quadratic complexity.

* Thanks to the additive structure in linearized attention, we present a
dynamic programming algorithm to achieve complexity.



Efficient Computation via Dynamic Programming

* We maintain a summed-area table (SAT), storing the prefix sum of all
tokens in image I above and to the left of each index (i, j),
S(,7) = 30 ST )

* The sum over any window can then be retrieved in constant time:
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Efficient Computation via Dynamic Programming

* The sum over vicinal groups in ripple attention can also be computed in

constant time:
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Experiments: Image Classification with ViTs

* Ripple improves Linearized Attention (LA) and outperforms conventional
quadratic attention even without positional encodings.

* |t can be considered as an approach to incorporating relative positional

information:

* outperforms previous baselines that try to incorporate relative positional

information into LA.

Image classification results on ImageNetlk dataset.

Image classification results on CIFAR-100 dataset.

w/ APE I w/o APE
Model
| # Params Top-1 Acc. Top-5 Acc. H # Params Top-1 Acc. Top-5 Acc.
DEIT-LA | 5.42M 67.00 88.57 5.36M 54.04 79.66
DEIT 5.42M 67.87 89.71 5.36M 53.64 80.30
CONVIT 5.42M 74.34 92.87 5.36M 73.88 92.20
RIPPLE | 5.47M 73.94 9237 || S542M 72.94 91.86

Model | #Params | Top-1 Acc. | Top-5 Acc.
Models with quadratic complexity
DEIT 5.72M 72.20 91.10
CONVIT (d’Ascoli et al., 2021) 5.72M 73.11 91.71
Models with sub-quadratic complexity

DEIT-LA 5.76M 70.67 90.16
DEIT-LA + SINCSPE (Liutkus et al., 2021) 5.84M 67.32 88.14
DEIT-LA + CONVSPE (Liutkus et al., 2021) 6.69M 67.64 88.40
DEIT-LA + ROPE (Su et al., 2021) 5.76M 71.19 00.48
PERMUTEFORMER (Chen, 2021) 5.76M 71.42 90.51
RIPPLE | 578M | 73.02 91.56




Experiments: Object Detection

* Ripple gives clear performance boost over LA on object detection.

* It also achieves better results than baselines on detecting small scale
objects, which might be due to the promoted local correlations.

Object detection on COCO benchmark.

50 epochs 108 epochs
Model # Params GFLOPs ln.f erence | ||
time(s) | AP APs APu AP || AP APs APu APL
SMCA 41.5M 88 0.059 41.0 219 443 59.1 || 42.7 228 46.1 60.0
SMCA-LA 41.7TM 79 0.062 39.1 198 428 565 || 41.1 220 445 590
SMCA-RIPPLE  41.8M 80 0.065 40.5 221 441 57.7 || 423 232 456 60.0




Experiments: Efficiency

* Ripple attention (w/ dynamic programming) scales better to higher-
resolution images with lower computational costs.

—4— Ripple (DP)

175 —®— Ripple (DP)
—&— Ripple (Naive)

2000 —&— Ripple (Naive)

—&— DEIT-LA 150 —4— DEIT-LA

= DELT DEIT
— 125

§«1500 m

(o)) G

e ~ 10.0

[ Py
o

2 1000 E 75

= (o)

% =

o

: el

12 162 322 482 642 802 962 1122 1282 12 162

322 482 642 802 962 1122 12872
Number of Tokens

Number of Tokens

Running time Memory consumption



Thanks!



