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Introduction

* Neural Architecture Search (NAS) has achieved state-of-the-art results on many domains

* Weight sharing
* Re-use the weights of shared operators from previously trained child models
* Reduce the cost of neural architecture search

 However, rank correlation is low due to the interference among different child models
* The shared operators receive different gradient directions from child models with different architecture



Interference: Gradient interference on shared
operators
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Analyzing Interference

* Notice the interference issue (Berder et al., 2018;
Guo et al., 2020; Lanbe & Zell 2021, Xie et al., 2020)

» Sampling child models cause high variance of the
rank (Zhang et al. 2020a)

Mitigating Interference

* Shrink search space (Zhang et al., 2020bl Hu et al.,
2020; Xu et al., 2021)

* Remove affine in batchnorm (Ning et al., 2021)

Figure 1: The illustration of the forward and back-
ward process regarding the operator o, in layer 1 that
is shared by child models that differ in layer 2.

Little has been discussed about the causes of the interference and how to mitigate it

* This paper focuses on the interference issue of chain-styled search space in sampled
single path one-shot NAS



‘Analyses

* Interference: Gradient interference
on shared operators
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Figure 1: The illustration of the forward and back-
ward process regarding the operator o, in layer 1 that
is shared by child models that differ in layer 2.

e We find

* By aligning the inputs and outputs of the shared operators to be similar to the average inputs and outputs,
the gradient interference can be reduced

* The interference on a shared operator between two child models is positively correlated to the number of
different operators between them.
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(a) Cosine similarity matrix of the super-net
trained by single path one-shot

* Analyze the gradient similarity on shared
operators between different candidate models
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(b) Cosine similarity matrix of the super-net
trained by single path one-shot with alignment



' Analyses

* Interference: Gradient interference
on shared operators
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Figure 1: The illustration of the forward and back-
ward process regarding the operator o, in layer 1 that
is shared by child models that differ in layer 2.

e We find

* By aligning the inputs and outputs of the shared operators to be similar to the average inputs and outputs,

the gradient interference can be reduced

* The interference on a shared operator between two child models is positively correlated to the number of

different operators between them.
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" Methods

* Approach 1: MitigAtinG InTerferenCe (MAGIC-T) from the
perspective of Topological environment
* Gradually change the topological environment for the shared
operators

» Samples a child model by randomly substituting one operator in
the child model sampled at the last step with another operator fo e e e
weights updating at each training step — Single Path One-Shot —— MAGIC-T

* Approach 2: MitigAtinG InTerferenCe (MAGIC-A) from the perspective of inputs and

outputs Alignment
* Pick a top-performing anchor child model from the search space to align other child models
 The anchor model can be replaced when the performance of another child model outperforms it



'Experiments

Model | Params | MNLI QQP QNLI ColLA SST-2 STS-B RTE MRPC | AVG
dev set

DistilBERT (Sanh et al., 2019) 66M 82.2 88.5 §9.2 51.3 91.3 86.9 599 R87.5 79.6
MiniLM (Wang et al., 2020) 66M 84.0 91.0 91.0 49.2 92.0 - 71.5 884 -
BERT-of-Theseus (Xu et al., 2020) | 66M 82.3 89.6 89.5 a2l 91.5 88.7 68.2 - -
PD-BERT (Turc et al., 2019) 66M 82.5 90.7 894 - 91.1 - 66.7 849 -
DynaBERT#* (Hou et al., 2020) 60M 84.2 91.2 91.5 56.8 92.7 89.2 72.2 84.1 82.7
NAS-BERT (Xu et al., 2021) 60M 84.1 91.0 91.3 58.1 92.1 89.4 79.2 88.5 84.2
SPOS (Guo et al., 2020) 60M 84.0 90.7 91.1 o ' 4 91.6 88.2 759 86.5 83.1
MAGIC-AT | 60M | 84.5 90.9 91.1 61.8 92.8 89.0 789 89.2 | 84.8

rest set

BERT-of-Theseus (Xu et al., 2020) | 66M 82.4 893 896 478 92.2 84.1 66.2 83.2 79.4
PD-BERT (Turc et al., 2019) 66M 82.8 88.5 889 - 918 - 65.3 81.7 -
BERT-PKD (Sun et al., 2019) 66M 81.5 889 890 - 920 - 655 799 -
TinyBERT#* (Jiao et al., 2020) 66M 84.6 89.1 904 51.1 93.1 83.7 70.0 82.6 80.6
NAS-BERT (Xu et al., 2021) 60M 83.5 88.9 909 484 92.9 86.1 73.7 845 81.1
SPOS (Guo et al., 2020) 60M 83.5 88.5 906 524 91.7 86.5 742 83.6 81.4

MAGIC-AT |60M |842 888 906 536 921 868 756 843 |82.0




Experiments

Model | Params | FLOPs | MNLI QQP OQNLI CoLA SST-2 STS-B RTE MRPC | AVG
dev set

BERT}, ... (Devlin et al., 2019) 110M 2.9e10 | 844 899 884 54.3 92.7 88.9 L1 867 82.1
RoBERTa;, ... (Liu et al., 2019) 125M 3.3e10 | 85.3 91.1 91.1 61.0 92.7 90.0 775 879 84.6
ELECTRApase (Clark et al., 2020) | 110M 2.9el10 | - - - - - - - - 85.1
MPNetpase (Song et al., 2020) 110M 2.9el10 | 85.2 - - - 934 - - - -
SPOS (Guo et al., 2020) 114M 3.3e10 | 84.7 914 914 59.6 92.1 89.7 809 86.3 84 .4
MAGIC-AT 113M 3.3e10 | 85.6 913 91.8 61.1 93.5 90.3 809 90.9 85.7
E-MAGIC-AT 110M 2.9¢10 | 86.3 91.7 925 65.8 92.5 91.0 84.0 89.7 86.7
test set

BERT}, ... (Devlin et al., 2019) 110M 2.9el10 | 84.6 89.2 90.5 52:1 93.5 85.8 664 84.8 80.9

RoBERTay,,. (Liu et al., 2019) 125M | 3.3el10 | 84.8 89.0 91.7 37:1 93.3 88.0 74.1 84.1 82.8
ELECTRA}, e (Clark et al., 2020) | 110M | 2.9¢10 | 85.8 89.1 92.7 59.7 934 87.7 73.1 86.7 83.5
SPOS (Guo et al., 2020) 114M | 3.3e10 | 84.3 88.6 910 56.1 92.8 88.1 749 834 82.4

MAGIC-AT 113M | 3.3e10 | 84.9 89.1 920 57.0 9%4.1 87.8 774 852 83.4
E-MAGIC-AT 110M | 2.9¢10 | 85.9 896 924 603 934 87.3 804 874 84.6




'Experiments

Table 5: Comparison of models on ImageNet.

Model | Topl/Top5 Err.  Params FLOPS
MobileNetV2 (Sandler et al., 2018) 25.3/- 6.9M 585M
ShuffleNetV2 (Zhang et al., 2018b) 25.1/- ~5M 591M
DARTS (Liu et al., 2018) 26.9/9.0 4.9M 595M
PC-DARTS (Xu et al., 2019) 24.2/7.3 5.3M 597M
CARS (Yang et al., 2020) 24.8/7.5 5.1IM 591M
PC-NAS (Li et al., 2020) 23.9/- 5.1IM -
EnTranNAS-DST (Yang et al., 2021) 23.8/7.0 5.2M 594M
Models searched on the MobileNetV2 search space

NAO (Luo et al., 2018) 24.5/7.8 6.5M 590M
LaNAS (Wang et al., 2021a) 250117 5.1IM 570M
BN-NAS (Chen et al., 2021) 24.3/- 4.4M 470M
ProxelessNAS (Cai et al., 2018) 24.0/7.1 5.8M 595M
RLNAS (Zhang et al., 2021) 24.4/7.4 5.3M 473M
SemiNAS (Luo et al., 2020) 23.5/6.8 6.3M 599M
MAGIC-AT | 23.2/6.7 6.0M 598M
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