

Analyzing and Mitigating Interference in Neural Architecture Search

Jin Xu¹, Xu Tan², Kaitao Song², Renqian Luo², Yichong Leng³, Tao Qin², Tie-Yan Liu², Jian Li¹

¹Tsinghua University
²Microsoft Asia, ³University of Science and Technology of China

Introduction

- Neural Architecture Search (NAS) has achieved state-of-the-art results on many domains
- Weight sharing
 - Re-use the weights of shared operators from previously trained child models
 - Reduce the cost of neural architecture search
- However, rank correlation is low due to the interference among different child models
 - The shared operators receive different gradient directions from child models with different architecture

Interference In Weight Sharing and Related Work

- Interference: Gradient interference on shared operators
- Analyzing Interference
 - Notice the interference issue (Berder et al., 2018; Guo et al., 2020; Lanbe & Zell 2021; Xie et al., 2020)
 - Sampling child models cause high variance of the rank (Zhang et al. 2020a)
- Mitigating Interference
 - Shrink search space (Zhang et al., 2020bl Hu et al., 2020; Xu et al., 2021)
 - Remove affine in batchnorm (Ning et al., 2021)

Figure 1: The illustration of the forward and backward process regarding the operator o_g in layer 1 that is shared by child models that differ in layer 2.

- Little has been discussed about the causes of the interference and how to mitigate it
- This paper focuses on the interference issue of chain-styled search space in sampled single path one-shot NAS

Analyses

 Interference: Gradient interference on shared operators

Figure 1: The illustration of the forward and backward process regarding the operator o_g in layer 1 that is shared by child models that differ in layer 2.

Analyze the gradient similarity on shared operators between different candidate models

(b) Cosine similarity matrix of the super-net trained by single path one-shot with alignment

We find

- By aligning the inputs and outputs of the shared operators to be similar to the average inputs and outputs, the gradient interference can be reduced
- The interference on a shared operator between two child models is positively correlated to the number of different operators between them.

Analyses

 Interference: Gradient interference on shared operators

Figure 1: The illustration of the forward and backward process regarding the operator o_g in layer 1 that is shared by child models that differ in layer 2.

We find

- By aligning the inputs and outputs of the shared operators to be similar to the average inputs and outputs,
 the gradient interference can be reduced
- The interference on a shared operator between two child models is positively correlated to the number of different operators between them.

Methods

- Approach 1: MitigAtinG InTerferenCe (MAGIC-T) from the perspective of Topological environment
 - Gradually change the topological environment for the shared operators
 - Samples a child model by randomly substituting one operator in the child model sampled at the last step with another operator fo weights updating at each training step

- Approach 2: MitigAtinG InTerferenCe (MAGIC-A) from the perspective of inputs and outputs Alignment
 - Pick a top-performing anchor child model from the search space to align other child models
 - The anchor model can be replaced when the performance of another child model outperforms it

Experiments

Model	Params	MNLI	QQP	QNLI	CoLA	SST-2	STS-B	RTE	MRPC	AVG
dev set										
DistilBERT (Sanh et al., 2019)	66M	82.2	88.5	89.2	51.3	91.3	86.9	59.9	87.5	79.6
MiniLM (Wang et al., 2020)	66M	84.0	91.0	91.0	49.2	92.0	-	71.5	88.4	-
BERT-of-Theseus (Xu et al., 2020)	66M	82.3	89.6	89.5	51.1	91.5	88.7	68.2	-	-
PD-BERT (Turc et al., 2019)	66M	82.5	90.7	89.4	-	91.1	-	66.7	84.9	-
DynaBERT* (Hou et al., 2020)	60M	84.2	91.2	91.5	56.8	92.7	89.2	72.2	84.1	82.7
NAS-BERT (Xu et al., 2021)	60M	84.1	91.0	91.3	58.1	92.1	89.4	79.2	88.5	84.2
SPOS (Guo et al., 2020)	60M	84.0	90.7	91.1	57.1	91.6	88.2	75.9	86.5	83.1
MAGIC-AT	60M	84.5	90.9	91.1	61.8	92.8	89.0	78.9	89.2	84.8
test set										
BERT-of-Theseus (Xu et al., 2020)	66M	82.4	89.3	89.6	47.8	92.2	84.1	66.2	83.2	79.4
PD-BERT (Turc et al., 2019)	66M	82.8	88.5	88.9	-	91.8	-	65.3	81.7	-
BERT-PKD (Sun et al., 2019)	66M	81.5	88.9	89.0	-	92.0	-	65.5	79.9	-
TinyBERT* (Jiao et al., 2020)	66M	84.6	89.1	90.4	51.1	93.1	83.7	70.0	82.6	80.6
NAS-BERT (Xu et al., 2021)	60M	83.5	88.9	90.9	48.4	92.9	86.1	73.7	84.5	81.1
SPOS (Guo et al., 2020)	60M	83.5	88.5	90.6	52.4	91.7	86.5	74.2	83.6	81.4
MAGIC-AT	60M	84.2	88.8	90.6	53.6	92.1	86.8	75.6	84.3	82.0

Experiments

Model	Params	FLOPs	MNLI	QQP	QNLI	CoLA	SST-2	STS-B	RTE	MRPC	AVG
dev set											
BERT _{base} (Devlin et al., 2019)	110M	2.9e10	84.4	89.9	88.4	54.3	92.7	88.9	71.1	86.7	82.1
RoBERTa _{base} (Liu et al., 2019)	125M	3.3e10	85.3	91.1	91.1	61.0	92.7	90.0	77.5	87.9	84.6
ELECTRA _{base} (Clark et al., 2020)	110M	2.9e10	-	2	_	_	2	_	_	-	85.1
MPNet _{base} (Song et al., 2020)	110M	2.9e10	85.2	-	-	-	93.4	-	-	-	-
SPOS (Guo et al., 2020)	114M	3.3e10	84.7	91.4	91.4	59.6	92.1	89.7	80.9	86.3	84.4
MAGIC-AT	113M	3.3e10	85.6	91.3	91.8	61.1	93.5	90.3	80.9	90.9	85.7
E-MAGIC-AT	110M	2.9e10	86.3	91.7	92.5	65.8	92.5	91.0	84.0	89.7	86.7
test set											
BERT _{base} (Devlin et al., 2019)	110M	2.9e10	84.6	89.2	90.5	52.1	93.5	85.8	66.4	84.8	80.9
RoBERTa _{base} (Liu et al., 2019)	125M	3.3e10	84.8	89.0	91.7	57.1	93.3	88.0	74.1	84.1	82.8
ELECTRA _{base} (Clark et al., 2020)	110M	2.9e10	85.8	89.1	92.7	59.7	93.4	87.7	73.1	86.7	83.5
SPOS (Guo et al., 2020)	114M	3.3e10	84.3	88.6	91.0	56.1	92.8	88.1	74.9	83.4	82.4
MAGIC-AT	113M	3.3e10	84.9	89.1	92.0	57.0	94.1	87.8	77.4	85.2	83.4
E-MAGIC-AT	110M	2.9e10	85.9	89.6	92.4	60.3	93.4	87.3	80.4	87.4	84.6

Experiments

Table 5: Comparison of models on ImageNet.

Model	Top1/Top5 Err.	Params	FLOPS					
MobileNetV2 (Sandler et al., 2018)	25.3/-	6.9M	585M					
ShuffleNetV2 (Zhang et al., 2018b)	25.1/-	\sim 5M	591M					
DARTS (Liu et al., 2018)	26.9/9.0	4.9M	595M					
PC-DARTS (Xu et al., 2019)	24.2/7.3	5.3M	597M					
CARS (Yang et al., 2020)	24.8/7.5	5.1M	591M					
PC-NAS (Li et al., 2020)	23.9/-	5.1M						
EnTranNAS-DST (Yang et al., 2021)	23.8/7.0	5.2M	594M					
Models searched on the MobileNetV2 search space								
NAO (Luo et al., 2018)	24.5/7.8	6.5M	590M					
LaNAS (Wang et al., 2021a)	25.0/7.7	5.1M	570M					
BN-NAS (Chen et al., 2021)	24.3/-	4.4M	470M					
ProxelessNAS (Cai et al., 2018)	24.0/7.1	5.8M	595M					
RLNAS (Zhang et al., 2021)	24.4/7.4	5.3M	473M					
SemiNAS (Luo et al., 2020)	23.5/6.8	6.3M	599M					
MAGIC-AT	23.2/6.7	6.0M	598M					

Thanks!