Safe Exploration for Efficient Policy Evaluation and Comparison

Runzhe Wan!, Branislav Kveton?, Rui Song1

INorth Carolina State University

2Amazon

ICML 2022

1/7



Policy Evaluation and Comparison

e Bandit policy/Optimal decision rule:

!, A ~ m(alx)

(a) Economics (b) Health Care
-

(c) E-commerce Platforms (d) Ridesharing

2/7



Policy Evaluation and Comparison

e Bandit policy/Optimal decision rule:
A ~ m(alx)

o Policy Evaluation:

V(ﬂ-) = Ex,aww(a|x)r(a’ X)

)
¢

(a) Economics (b) Health Care
-

(c) E-commerce Platforms (d) Ridesharing

2/7



Policy Evaluation and Comparison

e Bandit policy/Optimal decision rule:
A ~ m(alx)

o Policy Evaluation:

V(ﬂ-) = Ex,aww(a|x)r(a’ X)

(a) Economics

@ Policy Comparison:

V(m) > V(mo)?

(c) E-commerce Platforms (d) Ridesharing

2/7



N
Classic OPE v.s. SEPEC

v
)

evaluation !

! results

| estimator

3/7



N
Classic OPE v.s. SEPEC

evaluation !
results

3/7



N
Classic OPE v.s. SEPEC

I = j |
; data evaluation :
; ! results

:\ estimator

3/7



N
Classic OPE v.s. SEPEC

data OPE l
collection j
—:_)
exploration policy i data evaluation :
E & results
:\estimator

3/7



Classic OPE v.s. SEPEC

-
logged data -
(optional)

data

design collection

estimator
(user-specified)

safe policy &

>

exploration policy

0

evaluation

! results

estimator

.
'
'
'
'
]
'
'
'
'
'
'
'
'
'
'
'
'
'
'
\

3/7



Classic OPE v.s. SEPEC

>
logged data -

(optional) Gl —i ................... .
data ! \

design P OPE '

estimator 3 collection s
(user-specified) ' |
exploration policy i data evaluation !

results

safe policy & -

\ estimator ,:

N -

SEPEC: Safe Exploration for efficient Policy Evaluation and Comparison.

4/7



Classic OPE v.s. SEPEC

>
logged data -

(optional) Gl —i ................... .
data | \
design P OPE '
estimator 3 collection s
(user-specified) ' |
exploration policy i data evaluation !
results
safe policy & -
\ estimator

SEPEC: Safe Exploration for efficient Policy Evaluation and Comparison.

e Efficient: Minimize var(V/(r)) from following the exploration policy to collect data

4/7



Classic OPE v.s. SEPEC

>
logged data -

(optional) Gl —i ................... .
data | \
design P OPE '
estimator 3 collection s
(user-specified) ' |
exploration policy i data evaluation !
results
safe policy & -
\ estimator

SEPEC: Safe Exploration for efficient Policy Evaluation and Comparison.

e Efficient: Minimize var(V/(r)) from following the exploration policy to collect data

e Safe: V/(exploration policy) > (1 — €) x V/(safe policy)
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analyze design optimization
estimator & y statistical 9 tractable algorithm exploration
side information property optimization problem policy

e Study three representative variants: MAB with inverse probability weighting (IPW),
contextual MAB with IPW, and linear bandit with direct methods

o Investigate differences due to bandit setups, evaluation tasks, value estimators, and side
information availability

@ Present extensions including doubly robust (DR) estimators, pseudo-inverse estimator,
contextual linear bandits, etc.

@ Formulate as constrained convex optimization problems and solve with cutting-plane
method / Frank—Wolfe algorithm

@ Prove both optimality and safety
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