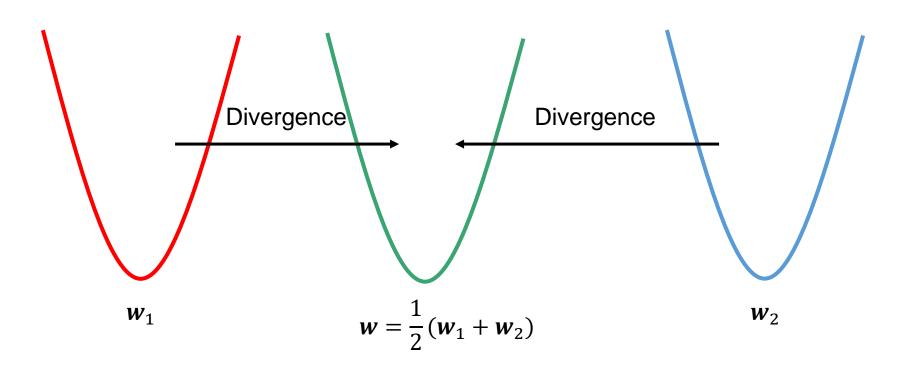
Generalized Federated Learning via Sharpness Aware Minimization

Zhe Qu¹, Xingyu Li⁺, Rui Duan¹, Yao Liu¹, Bo Tang⁺, Zhuo Lu¹

¹ University of South Florida

* Mississippi State University

Motivation

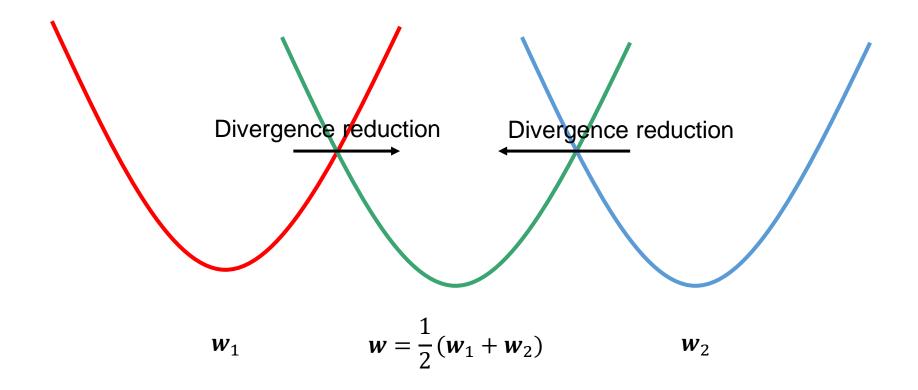


 W_1

Large divergence of w and w_1 , w and w_2 , due to the sharp valley of ERM and heterogeneous dataset on each client

$$\boldsymbol{w} = \frac{1}{2}(\boldsymbol{w}_1 + \boldsymbol{w}_2) \qquad \qquad \boldsymbol{w}_2$$

Motivation



We aim to smooth the sharp valley and reduce the large divergence between global model and each local model.

$$w_1$$
 $w = \frac{1}{2}(w_1 + w_2)$ w_2

Algorithm

Objective function:

$$\min_{\boldsymbol{w}} \left\{ F(\boldsymbol{w}) \coloneqq \frac{1}{N} \sum_{i \in [N]} F_i(\boldsymbol{w}) \right\}$$

Change to
$$\prod_{\boldsymbol{w}} \max_{||\delta_i|| \le \rho} \left\{ F(\widetilde{\boldsymbol{w}}) \coloneqq \frac{1}{N} \sum_{i \in [N]} F_i(\widetilde{\boldsymbol{w}}) \right\}$$

Sharpness Aware Minimization (SAM) to be local optimizer $\widetilde{w}_{i,k}^{r} = w_{i,k}^{r} + \rho \frac{g_{i,k}^{r}}{||g_{i,k}^{r}||}$ (find the optimal value $\widetilde{w}_{i,k}^{r} = w_{i,k}^{r} + \delta_{i}^{r}$)

$$\boldsymbol{w}_{i,k+1}^{r} = \boldsymbol{w}_{i,k}^{r} - \eta_{l} \boldsymbol{\tilde{g}}_{i,k}^{r}$$
(local training)

Sharpness Aware Minimization (SAM) to be local optimizer

The loss function *f* is smoother, when *L* is smaller. For ERM based FL with the original loss surface, *L* is very high. SAM based FL can reduce the *L* significantly.

Algorithm: FedSAM

Algorithm 1 FedAvg and FedSAM

Initialization: w_0 , $\rho_0 \Delta^0 = 0$, learning rates η_l , η_g and the number of epochs K. for r = 0, ..., R - 1 do Sample subset $S^r \subseteq [N]$ of clients. $w_{i,0}^{t} = w^{r}$. for each client $i \in S^r$ in parallel **do** for k = 0, ..., K - 1 do Compute a local training estimate $g_{i,k}^r$ = $\nabla F_i(w_{i,k}^r, \xi_{i,k}^r)$ of $\nabla F_i(w_{i,k}^r)$. $w_{i,k}^r = w_{i,k}^r - \eta_l g_{i,k}^r.$ Compute local model $w_{i,k}^r$ from (4). end for $\Delta_i^r = w_{i,K}^r - w^r.$ end for $\Delta^{r+1} = \frac{1}{S} \sum_{i \in \mathcal{S}^r} \Delta_i^r.$ $w^{r+1} = w^r + \eta_a \Delta^r.$ end for

Full participation

$$O\left(\frac{LF}{\sqrt{RKN}} + \frac{\sigma_g^2}{R} + \frac{L^2\sigma_l^2}{R^{3/2}\sqrt{KN}} + \frac{L^2}{R^2}\right)$$

Partial participation

$$O\left(\frac{LF}{\sqrt{RKS}} + \frac{\sqrt{K}\sigma_g^2}{\sqrt{RS}} + \frac{L^2\sigma_l^2}{R^{3/2}K} + \frac{L^2}{R^2}\right)$$

(The convergence results match the best rates in existing studies)

Generalization bound

$$\mathcal{L}^{SAM}(F(\boldsymbol{w})) \leq \tilde{\mathcal{L}}_{\gamma}^{SAM}(F(\boldsymbol{w}+\delta)) + O\left(\frac{32Ad^{2}h\log(dh)Q(F(\boldsymbol{w})) + d\log\frac{Nmd\log(M)}{\xi}}{\gamma^{2}m}\right)$$

This result indicates the dependence of the perturbation δ and the different neural network parameters in which we can enforce the loss surface around a point in order to guarantee the smoothness.

Algorithm: MoFedSAM

- The local optimizer SAM cannot directly affect the global model Δ^r .
- Reusing the information Δ^r can guide the local training on the participated clients in next communication round.

$$\widetilde{\boldsymbol{w}}_{i,k}^{r} = \boldsymbol{w}_{i,k}^{r} + \rho \frac{\boldsymbol{g}_{i,k}^{r}}{||\boldsymbol{g}_{i,k}^{r}||}$$
$$\boldsymbol{v}_{i,k}^{r} = \beta \boldsymbol{g}_{i,k}^{r} + (1 - \beta)\Delta^{r}$$
$$\boldsymbol{w}_{i,k+1}^{r} = \boldsymbol{w}_{i,k}^{r} + \eta \boldsymbol{v}_{i,k}^{r}$$

Algorithm: MoFedSAM

Algorithm 2 MoFedSAM algorithm.

1: Initialization: w^0 , $\Delta^0 = 0$, ρ^0 , momentum parameter β the number of local updates K. 2: for r = 0, ..., R - 1 do Sample subset $S^r \subseteq [N]$ of clients. 3: $w_{i,0}^{t} = w^{r}$. 4: for each client $i \in S^r$ in parallel **do** 5: for k = 0, ..., K - 1 do 6: Compute a local training estimate $g_{i,k}^r$ = 7: $\nabla F_i(w_{i,k}^r, \xi_{i,k}^r)$ of $\nabla F_i(w_{i,k}^r)$. Compute local model $w_{i,k}^r$ from (6). 8: end for 9: 10: $\Delta_i^r = w_{i,K}^r - w^r.$ 11: end for $\Delta^{r+1} = -\frac{1}{mKS} \sum_{i \in S^r} \Delta_i^r.$ 12: $w^{r+1} = w^r - \eta_q \Delta^{r+1}.$ 13: 14: end for

Full participation

$$O\left(\frac{\beta LF}{\sqrt{RKN}} + \frac{\beta \sigma_g^2}{RL^2} + \frac{L^2 \sigma_l^2}{R^2 \beta} + \frac{\beta L^2}{R^2}\right)$$

Partial participation

$$O\left(\frac{\beta LF}{\sqrt{RKS}} + \frac{\beta\sqrt{K}\sigma_g^2}{\sqrt{RS}} + \frac{L^2\sigma_l^2}{R^{3/2}K} + \frac{\sqrt{K}L^2}{R^{3/2}\sqrt{S}}\right)$$

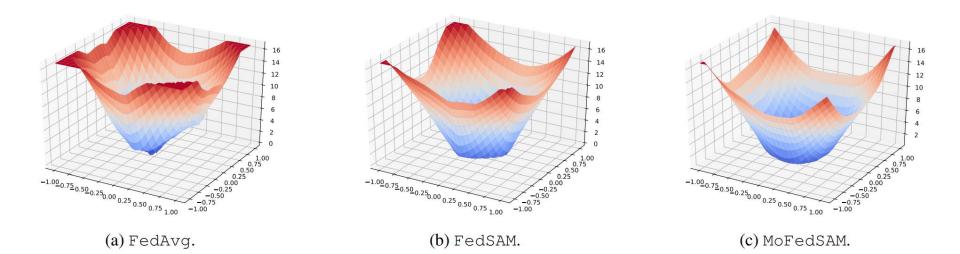
(The convergence results achieve a linear speedup compared to the existing studies.)

Experimental Results

Table 1. Average (standard deviation) training accuracy and testing accuracy. Communication round to achieve the targeted testing accuracy: EMNIST 80%, CIFAR-10 80% and CIFAR-100 50%.

Algorithm	EMNIST			CIFAR-10			CIFAR-100		
	Train	Validation	Round	Train	Validation	Round	Train	Validation	Round
FedAvg	95.07 (0.94)	84.38 (4.03)	43	93.15 (1.44)	81.87 (5.09)	307	79.57 (1.84)	53.57 (5.40)	302
SCAFFOLD	93.85 (1.31)	84.09 (4.56)	69	91.76 (1.89)	80.61 (5.64)	546	78.49 (2.02)	51.49 (5.87)	551
FedRobust	93.17 (0.62)	83.70 (3.37)	91	90.82 (1.27)	79.63 (4.21)	847	76.80 (1.70)	49.06 (4.75)	893
FedCM	96.16 (1.14)	84.85 (4.11)	28	95.61 (1.50)	83.30 (4.77)	136	82.13 (1.96)	55.50 (5.04)	182
MimeLite	96.22 (1.16)	84.88 (4.22)	25	95.73 (1.56)	83.18 (4.65)	152	82.46 (2.00)	55.73 (5.11)	189
FedSAM	95.73 (0.49)	84.75 (3.04)	38	94.20 (1.08)	83.06 (3.87)	269	81.04 (1.59)	54.69 (4.36)	245
MoFedSAM	96.42 (0.42)	85.07 (2.95)	24	95.67 (1.16)	83.92 (3.65)	124	82.62 (1.53)	56.60 (4.42)	124

Experimental Results



Thank you !