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Divergence DivergenceLarge divergence of 𝒘 and 𝒘1, 𝒘 and 𝒘2, 
due to the sharp valley of ERM and 

heterogeneous dataset on each client 
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Motivation

𝒘1 𝒘2𝒘 =
1

2
(𝒘1 +𝒘2)

Divergence reduction Divergence reductionWe aim to smooth the sharp valley and 
reduce the large divergence between 
global model and each local model.
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Algorithm: FedSAM

Sharpness Aware Minimization (SAM) to be local optimizer
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The loss function f is smoother, when L is 
smaller. For ERM based FL with the 

original loss surface, L is very high. SAM 
based FL can reduce the L significantly.
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Theoretical Results: FedSAM
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(The convergence results match the best rates in existing studies)



Theoretical Results: FedSAM

Generalization bound
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This result indicates the dependence of the perturbation 𝛿 and the 

different neural network parameters in which we can enforce the loss 

surface around a point in order to guarantee the smoothness.



Algorithm: MoFedSAM

• The local optimizer SAM cannot directly affect the global 

model Δ𝑟 .

• Reusing the information Δ𝑟 can guide the local training on the 

participated clients in next communication round.
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Theoretical Results: MoFedSAM
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(The convergence results achieve a linear speedup compared to the 

existing studies.)
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