# Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity



Laixi Shi CMU



Gen Li Uppen



Yuting Wei Uppen



Yuxin Chen Uppen



Yuejie Chi CMU

## Reinforcement learning (RL) and its challenges

In RL, an agent learns by interacting with an environment.







#### **Challenges:**

- explore or exploit: unknown or changing environments
- credit assignment problem: delayed rewards or feedback
- enormous state and action space

## Offline/Batch RL motivation: sample efficiency

- Having stored tons of history data
- Collecting new data might be expensive or time-consuming



medical records



data of self-driving



clicking times of ads

## Offline/Batch RL motivation: sample efficiency

- Having stored tons of history data
- Collecting new data might be expensive or time-consuming



medical records



data of self-driving



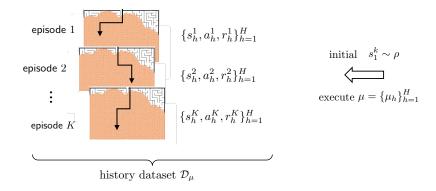
clicking times of ads

Can we design sample-efficient algorithms based on only history data?

### Offline/Batch RL: no interaction with environments

Given a history dataset  $\mathcal{D}_{\mu}$  of K episodes, each consisting of H steps:

$$\mathcal{D}_{\mu} := \left\{ \left( s_{1}^{k}, a_{1}^{k}, r_{1}^{k}, \cdots, s_{H}^{k}, a_{H}^{k}, r_{H}^{k} \right) \right\}_{k=1}^{K}$$



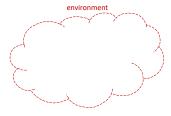
### Offline RL: find an $\epsilon$ -optimal policy

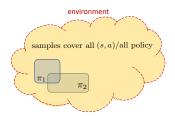
**Performance metric:** Given initial state distribution  $\rho$  and any accuracy level  $\epsilon$ . An  $\epsilon$ -optimal policy  $\widehat{\pi} = \{\widehat{\pi}_h\}_{h=1}^H$  obeys

$$V_1^{\star}(\rho) - V_1^{\widehat{\pi}}(\rho) \le \epsilon$$

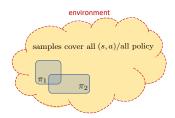
Goal: find an  $\epsilon$ -optimal policy using only history dataset

— in a sample-efficient manner

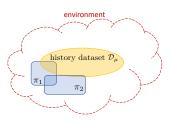




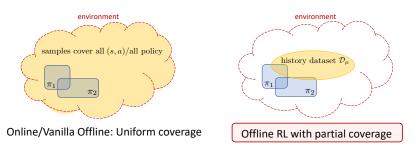
Online/Vanilla Offline: Uniform coverage



Online/Vanilla Offline: Uniform coverage



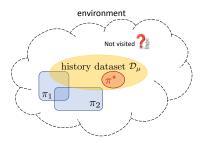
Offline RL with partial coverage



Assumption on  $\mathcal{D}_{\mu}$ : finite single-policy concentrability

## Key idea: pessimism/conservatism

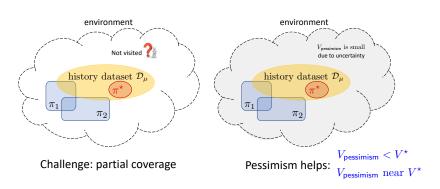
— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21



Challenge: partial coverage

### Key idea: pessimism/conservatism

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21



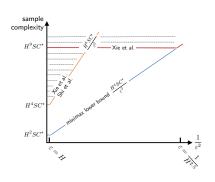
#### Pessimism in Offline RL:

add (s, a)-dependent penalties to reduce uncertainty damage.

#### Prior art: Xie et al. '21

### Sample complexity $T=KH=|\mathcal{D}_{\mu}|$

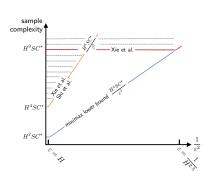
| Algorithm          | Type        | Sample complexity          |
|--------------------|-------------|----------------------------|
| VI-LCB             | model-based | $H^6SC^{\star}/\epsilon^2$ |
| (Xie et al., 2021) | model-based | 11 50 /6                   |
| PEVI-Adv           | model-based | $H^4SC^{\star}/\epsilon^2$ |
| (Xie et al., 2021) |             | II be /e                   |
| lower bound        | n/a         | $H^4SC^{\star}/\epsilon^2$ |
| (Xie et al., 2021) | II/d        | 11 50 /6                   |



#### Prior art: Xie et al. '21

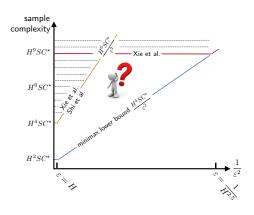
### Sample complexity $T=KH=|\mathcal{D}_{\mu}|$

| Algorithm          | Type        | Sample complexity          |
|--------------------|-------------|----------------------------|
| VI-LCB             | model-based | $H^6SC^{\star}/\epsilon^2$ |
| (Xie et al., 2021) |             |                            |
| PEVI-Adv           | model-based | $H^4SC^{\star}/\epsilon^2$ |
| (Xie et al., 2021) |             |                            |
| lower bound        | n/a         | $H^4SC^{\star}/\epsilon^2$ |
| (Xie et al., 2021) |             |                            |

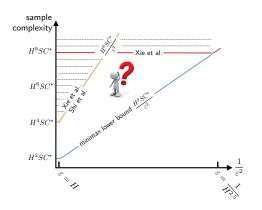


Model-based RL achieve optimal sample complexity when the accuracy level is small enough ( $\epsilon \leq \frac{1}{H^{2.5}}$ )

# No model-free offline RL analysis

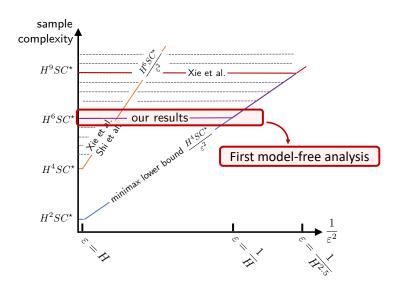


### No model-free offline RL analysis



Will flexible model-free RL work? Can we enlarge the range of accuracy level  $\epsilon$ ?

### This work



## Our algorithm: LCB-Q-Advantage

#### Theorem (Shi, Li, Wei, Chen, Chi, 2022)

With high prob., for  $\epsilon \in (0, \frac{1}{H}]$ , LCB-Q-Advantage can find an  $\epsilon$ -optimal policy  $\widehat{\pi}$  as long as (up to log factor)

$$T \gtrsim O\left(\frac{H^4SC^*}{\epsilon^2}\right).$$

## Our algorithm: LCB-Q-Advantage

#### Theorem (Shi, Li, Wei, Chen, Chi, 2022)

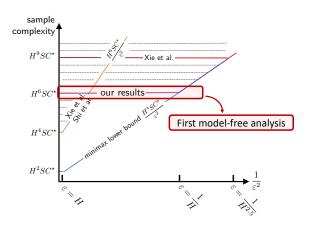
With high prob., for  $\epsilon \in \left(0, \frac{1}{H}\right]$ , LCB-Q-Advantage can find an  $\epsilon$ -optimal policy  $\widehat{\pi}$  as long as (up to log factor)

$$T \gtrsim O\left(\frac{H^4SC^*}{\epsilon^2}\right).$$

- $\bullet$  model-free RL achieves optimal sample complexity for certain accuracy  $\epsilon$
- optimal in a larger accuracy range (improved by a factor of  $H^{1.5}$ )

$$\underbrace{\epsilon \leq \left(0, H^{-1}\right]}_{\text{(Our LCB-Q-Advantage)}} \quad \text{vs.} \qquad \underbrace{\epsilon \leq \left(0, H^{-2.5}\right]}_{\text{(PEVI-Adv in [Xie et al., 2021])}}$$

## Concluding remarks



Model-free RL matches the minimax-optimal sample complexity for model-based ones!

— in a much larger range of the accuracy level