
www.lamda.nju.edu.cn

Fast Provably Robust 
Decision Trees and Boosting

Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao and Zhi-Hua Zhou
Nanjing University



www.lamda.nju.edu.cn

www.lamda.nju.edu.cn

Fast Provably Robust Decision Trees and BoostingGuo, Teng, Gao, Zhou

About this work

In this work, we propose:
ü Fast Provably Robust Decision Tree (FPRDT)
• A tradeoff between local and global optimization
• the smallest computational complexity

ü Provably Robust AdaBoost (PRAdaBoost)
• the smallest computational complexity

Much attention has been paid to Robust decision trees and ensembles

Previous methods: high comp. or no guarantee of provable robustness
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Decision tree and ensembles 
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Loss: 0
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Adversarial
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Prediction: “7”
Loss: 1

Those models are vulnerable to adversarial perturbations:

Decision trees and ensembles are important learning algorithms
• Decision trees [Quinlan et al., 1986; Safavian et al., 1991; Maimon et al., 2014]

• AdaBoost [Freund et al., 1996; Ratsch et al., 2001; Bartlett et al., 2006]

• Random forests [Breiman, 2001; Biau, 2012; Athey et al., 2019]

• 
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Previous robust decision trees and ensembles

Can we learn robust decision trees and Boosting with 
• low computational complexity 
• guarantees of provable robustness

no guarantee of 
provable robust.

Ø Global robust decision tree [Vos et al., 2021b]

Ø Boosting method [Andriushchenko et al., 2019; Chen et al., 2019]

Ø Local robust decision tree [Chen et al., 2019; Vos et al., 2021a]

Ø Random forests based method [Vos et al., 2021a]

Ø 

high comp. 
complexity
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Adversarial robust learning

Adversarial robust learning aims to optimize

min
ℎ∈ℋ

 
�=1

�

max
||�� − ��||∞<�

�(ℎ(�� , �� • training data  (�1, �1 , …, (��, ��  
• learning model ℎ ∈ ℋ
• loss function �(⋅ , ⋅ → �

Our work: decision tree model ℎ
                 the 0/1 loss �(ℎ(�� , �� = � ℎ(�� ≠ �� 
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Objective loss for robust decision tree

• A decision tree has � leaf nodes 

• Outputs �� = ℎ(�  for instance �, which is belong to the �-th leaf

Our objective loss for decision tree is given by

 
�=1

�

max
||�� − ��||∞<�

�(ℎ(�� , �� = 
�=1

�

max
�∈ � 

 � �� ≠ �� ⋅ Fall(�, �  

Traversing 
all nodes 

Main idea: potential predictions of �� can be solved by traversing 
all nodes for decision tree

Is the �-th instance 
belong to the �-th leaf 
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Decomposition of objective loss at a split

• Split the �-th leaf to leaves � and �

• Let �� and �� denote the output for two leaves, respectively

max
�∈ �,� ∪ � \p

 � �� ≠ �� Fall(�, �   

       =  max � �� ≠ �� Fall(�, � , � �� ≠ �� Fall(�, � , max
�∈ � \ � 

 � �� ≠ �� Fall(�, �   

We can decompose the objective loss at the split on the �-th leaf as

loss for left child 
(easy)

loss for right child  
(easy)

maximal loss for other leaves 
(hard)

For simplicity, denote by ��� = max
�∈ � \ � 

 � �� ≠ �� Fall(�, �  
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Calculate the maximal loss ���
• Split the �-th leaf to leaves � and �
• ���: the maximal loss for other leaves

• ��: the sum of loss for all leaves

We determine ��� by the �� minus the loss for �-th leaf:

 ��� = 1       ↔      �� − � �� ≠ �� Fall(�, � ≥ 1
maximal loss for 

other leaves
sum of loss for 

all leaves
loss for 
�-th leaf

�� can be updated efficiently after each split.
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Solution

The solution steps:
• Traverse all feature �

• Traverse threshold � from sorted potential splits

• Fixed �′ and �′, by traverse ��, �� ∈  0,1  , we solve
(��′, ��′  = argmin

��,��∈ 0,1  
�(�′, �′, ��, �� 

• Update the optimal solution

Split the �-th leaf to leaves � and �
Let �� and �� denote the output for two leaves, respectively
Let � and � denote the split feature and threshold, respectively
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Fast Provably Robust Decision Trees

calculate the maximum loss among other leaves

traverse potential split features and sorted thresholds

Computation complexity �(�log� 
• sort the potential thresholds �(�log� 
• solve minimum �(� 

update the minimum loss and the optimal solution

compute the corresponding optimal loss
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Upper bound on robust AdaBoost

Main idea: relax the robust problem to several robust sub-problems
                  for each base learner

AdaBoost essentially optimizes the exponential loss

For robust AdaBoost, it is an NP-hard problem to optimize the 
adversarial exponential loss [Kantchelian et al., 2013]

We consider the upper bound on adversarial exponential loss as

max
||�� − ��||∞<�

exp  
�=1

�

− ����ℎ�(��  ≤ 
�=1

�

max
 |�� − ��| ∞<�

 exp − ����ℎ�(��   
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Main idea of our fast provably robust AdaBoost

• We use our fast provably robust decision trees (FPRDT) as 
base learner by minimizing the weighted adversarial 0/1 loss

• Robust AdaBoost updates the instance weights by 

��+1,� = ��,� max
 |�� − ��| ∞<�

 exp − ����ℎ�(��   

Complexity �(�log� : update the weights �(�  
                                      train the base learner �(�log� 
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Convergence analysis for PRAdaBoost

Theorem Let �(�  be the final classifier of PRAdaBoost with error �� for 
each iteration � ∈  � . We have

1
� 
�=1

�

min
 |�� − ��| ∞<�

� �(�� ≠ ��   ≤ exp −2 
�=1

�

(0.5 − �� 2 

As AdaBoost, empirical adversarial 0/1 error of PRAdaBoost 
has the exponential decrease with the iteration number �
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Benchmark datasets

l Number of instances: 351 ~ 15170

l Number of features: 4 ~ 3072

l Perturbation rate follows previous work
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Compared methods
 Robust decision trees

Ø RIGBT-h: Robust tree via adversarial information gain [Chen et al., 2019]

Ø TREANT: Robust tree with additional constraints [Calzavara et al., 2020]

Ø GROOT: Robust tree via adversarial Gini impurity [Vos et al., 2021a]

Ø ROCT: Robust tree with global optimization [Vos et al., 2021b]

Ø PRB tree: Robust tree based on adv. exp-loss [Andriushchenko et al., 2021]

Robust tree ensembles:
Ø RGBDT: Robust boosting via approximating adversarial loss [Chen et al., 2019]

Ø RIGDT forest: Random forest with base learner RIGBT-h [Vos et al., 2021b]

Ø GROOT forest: Random forest with base learner GROOT [Vos et al., 2021b]

Ø PRBoosting: Robust GBDT by upper bound of exp-loss [Andriushchenko et al., 2021]
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Comparisons on training adversarial error

Our approach: continuously decreases the training adversarial errors

Unprovable methods: may increase the training adversarial errors
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Accuracy comparisons for our FPRDT

Our FPRDT: significantly better than other decision trees
• unprovable methods make local optimizations
• provable methods do not obtain good result due to high complexity
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Accuracy comparisons for our PRAdaBoost

Our PRAdaBoost: significantly better than other unprovable methods
                               comparable with PRBoosting yet with smaller time
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Running time

Our approaches: faster than other provable robust methods
                            comparable with unprovable robust methods
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Conclusion

Thanks!
Future work: other adversarial losses for robust decision trees

In this work, we propose 

• Fast Provably Robust Decision Tree (FPRDT)
adversarial 0/1 loss, smallest computational complexity

• Provably Robust AdaBoost (PRAdaBoost)
upper bound on adversarial exp. loss, smallest comp. complexity


