

Fast Provably Robust Decision Trees and Boosting

Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao and Zhi-Hua Zhou Nanjing University

Much attention has been paid to Robust decision trees and ensembles

Previous methods: high comp. or no guarantee of provable robustness

In this work, we propose:

✓ Fast Provably Robust Decision Tree (FPRDT)

- A tradeoff between local and global optimization
- the smallest computational complexity
- Provably Robust AdaBoost (PRAdaBoost)
 - the smallest computational complexity

	Methods	Comp. complexity	Prov. robustness
	Our FPRDT	$O(n \log n)$	\checkmark
)	Our PRAdaBoost	$O(n \log n)$	✓
	ROCT (Vos & Verwer, 2021b)	$O(\exp(n))$	\checkmark
	TREANT (Calzavara et al., 2020)	$O(n^2)$	\checkmark
	PRB (Andriushchenko & Hein, 2019)	$O(n^2)$	\checkmark
	GROOT (Vos & Verwer, 2021a)	$O(n\log n)$	×
	RIGDT-heuristic (Chen et al., 2019a)	$O(n\log n)$	×
	RGBDT (Chen et al., 2019a)	$O(n\log n)$	×
	AdvBoost (Kantchelian et al., 2016)	$O(n\log n)$	×

Outline

- Introduction
- **D** Our work
 - □ Robust decision trees
 - Robust AdaBoost
- **D** Experiments
- □ Conclusion

Decision trees and ensembles are important learning algorithms

- Decision trees [Quinlan et al., 1986; Safavian et al., 1991; Maimon et al., 2014]
- AdaBoost [Freund et al., 1996; Ratsch et al., 2001; Bartlett et al., 2006]
- Random forests [Breiman, 2001; Biau, 2012; Athey et al., 2019]

Those models are **vulnerable** to adversarial perturbations:

Guo, Teng, Gao, Zhou Fast Provably Robust Decision Trees and Boosting www.lamda.nju.edu.cn

Can we learn robust decision trees and Boosting with

- low computational complexity
- guarantees of provable robustness

Outline

- □ Introduction
- **Our work**
 - **Robust decision trees**
 - Robust AdaBoost
- **D** Experiments
- □ Conclusion

Adversarial robust learning aims to optimize n

$$\min_{h\in\mathcal{H}}\sum_{i=1}^{\infty}\max_{||\boldsymbol{z}_i-\boldsymbol{x}_i||_{\infty}<\epsilon}l(h(\boldsymbol{z}_i),\boldsymbol{y}_i)$$

- training data { $(x_1, y_1), ..., (x_n, y_n)$ }
- learning model $h \in \mathcal{H}$
- loss function $l(\cdot, \cdot) \rightarrow R$

Our work: decision tree model *h*

the 0/1 loss $l(h(\mathbf{z}_i), y_i) = \mathbb{I}[h(\mathbf{z}_i) \neq y_i]$

Objective loss for robust decision tree

- A decision tree has *m* leaf nodes
- Outputs $v_j = h(z)$ for instance z, which is belong to the *j*-th leaf

Our objective loss for decision tree is given by

$$\sum_{i=1}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{i=1 \ j \in [m] \\ \text{Traversing} \\ \text{all nodes}}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{i=1 \ j \in [m] \\ \text{Traversing} \\ \text{all nodes}}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{i=1 \ j \in [m] \\ \text{Traversing} \\ \text{all nodes}}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{i=1 \ j \in [m] \\ \text{Traversing} \\ \text{all nodes}}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{i=1 \ j \in [m] \\ \text{Traversing} \\ \text{all nodes}}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{i=1 \ j \in [m] \\ \text{Traversing} \\ \text{all nodes}}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n} \max_{\substack{||z_i - x_i||_{\infty} < \epsilon}} l(h(z_i), y_i) = \sum_{\substack{||z_i - x_i||_{\infty} < \epsilon}}^{n$$

Main idea: potential predictions of x_i can be solved by traversing all nodes for decision tree

(hard)

• Split the *p*-th leaf to leaves *l* and *r*

(easy)

• Let v_l and v_r denote the output for two leaves, respectively

We can decompose the objective loss at the split on the *p*-th leaf as $\max_{j \in \{l,r\} \cup [m] \setminus p} \{ \mathbb{I}[v_j \neq y_i] \text{Fall}(i, j) \}$ $= \max\{ \mathbb{I}[v_l \neq y_i] \text{Fall}(i, l), \mathbb{I}[v_r \neq y_i] \text{Fall}(i, r), \max_{j \in [m] \setminus \{p\}} \{ \mathbb{I}[v_j \neq y_i] \text{Fall}(i, j) \} \}$ $= \max\{ \mathbb{I}[v_l \neq y_i] \text{Fall}(i, l), \mathbb{I}[v_r \neq y_i] \text{Fall}(i, r), \max_{j \in [m] \setminus \{p\}} \{ \mathbb{I}[v_j \neq y_i] \text{Fall}(i, j) \} \}$

(easy)

For simplicity, denote by $K_{ip} = \max_{j \in [m] \setminus \{p\}} \{ \mathbb{I}[v_j \neq y_i] \text{Fall}(i, j) \}$

Calculate the maximal loss K_{ip}

- Split the *p*-th leaf to leaves *l* and *r*
- K_{ip} : the maximal loss for other leaves
- E_i : the sum of loss for all leaves

We determine K_{ip} by the E_i minus the loss for *p*-th leaf:

$K_{ip} = 1$	\leftrightarrow	$E_i - \mathbb{I}[v_p]$	$y \neq y_i$]Fall $(i, p) \ge 1$
maximal loss for	sum o	f loss for	loss for
other leaves	all	leaves	<i>p</i> -th leaf

 E_i can be updated efficiently after each split.

Solution

Split the p-th leaf to leaves l and r

Let v_l and v_r denote the output for two leaves, respectively

Let t and η denote the split feature and threshold, respectively

The solution steps:

- Traverse all feature *t*
- Traverse threshold η from sorted potential splits
- Fixed t' and η' , by traverse $v_l, v_r \in \{0,1\}$, we solve

$$(v'_l, v'_r) = \underset{v_l, v_r \in \{0,1\}}{\operatorname{argmin}} L(t', \eta', v_l, v_r)$$

• Update the optimal solution

Fast Provably Robust Decision Trees

Algorithm 2 FPRDT-recursive **Input:** Dataset S_n , split leaf p, perturbation size ϵ , previous optimal loss $\hat{\mathcal{L}}^{pre}$ **Output:** None Initialize $\hat{\mathcal{L}}^* \leftarrow +\infty$ calculate the maximum loss among other leaves Compute loss K_{ip} $(i \in [n])$ according to Eqn. (3) for t' = 1 to d do Compute $W_{t'}$ according to Eqn. (4) traverse potential split features and sorted thresholds for η' in sorted($W_{t'}$) do Compute $\mathbb{I}[\mathcal{E}_{il} \neq \emptyset]$ and $\mathbb{I}[\mathcal{E}_{ir} \neq \emptyset]$ by Eqns. (5)-(6) compute the corresponding optimal loss Solve v'_{l} and v'_{r} from Eqn. (7) with optimal loss $\hat{\mathcal{L}}'$ if $\hat{\mathcal{L}}' < \hat{\mathcal{L}}^*$ then update the minimum loss and the optimal solution $t^* = t', \eta^* = \eta', v_l^* = v_l', v_r^* = v_r', \hat{\mathcal{L}}^* = \hat{\mathcal{L}}'$ end if end for end for if $\hat{\mathcal{L}}^* < \hat{\mathcal{L}}^{\text{pre}}$ then **Computation complexity** $O(n \log n)$ Split leaf p via $\{t^*, \eta^*, v_l^*, v_r^*\}$, and obtain children l, r • sort the potential thresholds $\mathcal{O}(n\log n)$ Update E_i $(i \in [n])$ according to Eqn. (8) FPRDT-recursive($S_n, l, \epsilon, \mathcal{L}^*$) • solve minimum $\mathcal{O}(n)$ FPRDT-recursive($S_n, r, \epsilon, \hat{\mathcal{L}}^*$) end if

Outline

- □ Introduction
- **Our Work**
 - **D** Robust Decision Trees
 - **Robust AdaBoost**
- **D** Experiments
- □ Conclusion

AdaBoost essentially optimizes the exponential loss

For robust AdaBoost, it is an NP-hard problem to optimize the adversarial exponential loss [Kantchelian et al., 2013]

We consider the upper bound on adversarial exponential loss as

$$\max_{||z_i - x_i||_{\infty} < \epsilon} \exp\left(\sum_{j=1}^m -y_j \alpha_j h_j(z_i)\right) \le \prod_{j=1}^m \max_{||z_i - x_i||_{\infty} < \epsilon} \left\{\exp\left(-y_i \alpha_j h_j(z_i)\right)\right\}$$

Main idea: relax the robust problem to several robust sub-problems for each base learner

- We use our fast provably robust decision trees (FPRDT) as base learner by minimizing the weighted adversarial 0/1 loss
- Robust AdaBoost updates the instance weights by

$$w_{t+1,i} = w_{t,i} \max_{||z_i - x_i||_{\infty} < \epsilon} \{ \exp(-y_i \alpha_t h_t(z_i)) \}$$

Complexity $O(n \log n)$: update the weights O(n)train the base learner $O(n \log n)$

Theorem Let H(x) be the final classifier of PRAdaBoost with error ϵ_t for each iteration $t \in [T]$. We have

$$\frac{1}{n} \sum_{i=1}^{n} \min_{\left||z_{i} - x_{i}|\right|_{\infty} < \varepsilon} \mathbb{I}[H(z_{i}) \neq y_{i}] \leq \exp\left(-2\sum_{t=1}^{T} (0.5 - \epsilon_{t})^{2}\right)$$

As AdaBoost, empirical adversarial 0/1 error of PRAdaBoost has the exponential decrease with the iteration number *T*

Outline

- □ Introduction
- **D** Our Work
 - **D** Robust Decision Trees
 - Robust AdaBoost
- **Experiments**
- □ Conclusion

Benchmark datasets

Dataset (Perb.)	# Inst.	# Feat.	Dataset (Perb.)	# Inst.	# Feat.
ionos (.2)	351	34	cifar10:0v5 (.1)	12,000	3,072
breast (.3)	683	9	cifar10:0v6 (.1)	12,000	3,072
diabet (.05)	768	8	cifar10:4v8 (.1)	12,000	3,072
bank (.1)	1,372	4	mnist2v6 (.4)	13,866	784
Japan3v4 (.1)	3,087	14	mnist3v8 (.4)	13,966	784
har1v2 (.1)	3,266	561	F-mnist2v5 (.2)	14,000	784
spam (.05)	4,601	57	F-mnist3v4 (.2)	14,000	784
GesDvP (.01)	4,838	32	F-mnist7v9 (.2)	14,000	784
wine (.05)	6,497	11	mnist1v7 (.4)	15,170	784

- Number of instances: $351 \sim 15170$
- Number of features: $4 \sim 3072$
- Perturbation rate follows previous work

Robust decision trees

- **RIGBT-h**: Robust tree via adversarial information gain [Chen et al., 2019]
- **TREANT**: Robust tree with additional constraints [Calzavara et al., 2020]
- ➢ GROOT: Robust tree via adversarial Gini impurity [Vos et al., 2021a]
- **ROCT**: Robust tree with global optimization [Vos et al., 2021b]
- PRB tree: Robust tree based on adv. exp-loss [Andriushchenko et al., 2021]

Robust tree ensembles:

- **RGBDT**: Robust boosting via approximating adversarial loss [Chen et al., 2019]
- ► **RIGDT forest**: Random forest with base learner RIGBT-h [Vos et al., 2021b]
- ➢ GROOT forest: Random forest with base learner GROOT [Vos et al., 2021b]
- PRBoosting: Robust GBDT by upper bound of exp-loss [Andriushchenko et al., 2021]

Comparisons on training adversarial error

Our approach: **continuously decreases** the training adversarial errors Unprovable methods: **may increase** the training adversarial errors

Guo, Teng, Gao, Zhou Fast Provably Robust Decision Trees and Boosting www.lamda.nju.edu.cn

Accuracy comparisons for our FPRDT

Dataset	FPRDT	Decision tree	RIGDT-h	GROOT	TREANT	ROCT	PRB tree
ionos	$.7954 \pm .0302$	$.3100 \pm .0549 \bullet$	$.7015 \pm .0874 \bullet$	$.7829 \pm .0325 \bullet$	$.7232 \pm .0434 \bullet$	$.7897 \pm .0330 \bullet$	$.7601 \pm .0346 \bullet$
breast	$.8765 \pm .0290$	$.2501 \pm .0457 \bullet$	$.8381 \pm .0317 \bullet$	$.8744 \pm .0273$	$.8334 \pm .0318 \bullet$	$.8735 \pm .0256$	$.8706 \pm .0258 \bullet$
diabet	$.6674 \pm .0258$	$.6333 \pm .0346 \bullet$	$.5695 \pm .0640 \bullet$	$.6481 \pm .0352 \bullet$	$.6695 \pm .0228$	$.6552 \pm .0244 \bullet$	$.6633 \pm .0333$
bank	$.6577 \pm .0311$	$.6333 \pm .0346 \bullet$	$.4685 \pm .0713 \bullet$	$.5410 \pm .0440 \bullet$	$.6092 \pm .0259 \bullet$	$.6539 \pm .0167$	$.6299 \pm .0328 \bullet$
Japan3v4	$.6673 \pm .0129$	$.5751 \pm .0377 \bullet$	$.5638 \pm .0337 \bullet$	$.5829 \pm .0468 \bullet$	N/A	$.6671 \pm .0170$	$.5954 \pm .0112 \bullet$
har1v2	$.8044 \pm .0249$	$.2316 \pm .0434 \bullet$	$.7074 \pm .0257 \bullet$	$.8058 \pm .0198$	N/A	$.7786 \pm .0165 \bullet$	$.7383 \pm .0148 \bullet$
spam	$.7404 \pm .0124$	$.0006 \pm .0012 \bullet$	$.4669 \pm .1019 \bullet$	$.7231 \pm .0188 \bullet$	N/A	$.4813 \pm .0469 \bullet$	$.6968 \pm .0110 \bullet$
GesDvP	$.7301 \pm .0174$	$.4783 \pm .1390 \bullet$	$.5483 \pm .1035 \bullet$	$.7164 \pm .0180 \bullet$	N/A	$.7071 \pm .0126 \bullet$	$.7014 \pm .0190 \bullet$
wine	$.6364 \pm .0062$	$.3515 \pm .1430 \bullet$	$.4032 \pm .0375 \bullet$	$.6373 \pm .0073$	$.6388 \pm .0079$ \circ	$.6117 \pm .0343 \bullet$	$.6299 \pm .0080 \bullet$
cifar10:0v5	$.6878 \pm .0177$	$.2960 \pm .0598 \bullet$	$.3469 \pm .0457 \bullet$	$.4847 \pm .0608 \bullet$	N/A	$.6639 \pm .0113 \bullet$	$.6501 \pm .0106 \bullet$
cifar10:0v6	$.6883 \pm .0102$	$.5878 \pm .0568 \bullet$	$.4771 \pm .0168 \bullet$	$.5555 \pm .0495 \bullet$	N/A	$.6684 \pm .0077 \bullet$	$.6833 \pm .0051 \bullet$
cifar10:4v8	$.6613 \pm .0117$	$.2561 \pm .0784 \bullet$	$.4882 \pm .0468 \bullet$	$.4727 \pm .0195 \bullet$	N/A	$.6319 \pm .0114 \bullet$	$.6698 \pm .0093$ \circ
mnist2v6	$.8954 \pm .0025$	$.0178 \pm .0320 \bullet$	$.8850 \pm .0079 \bullet$	$.8725 \pm .0110 \bullet$	N/A	$.7842 \pm .0222 \bullet$	$.8385 \pm .0673 \bullet$
mnist3v8	$.8527 \pm .0058$	$.0028 \pm .0071 \bullet$	$.8102 \pm .0102 \bullet$	$.7575\pm.0185\bullet$	N/A	$.7565 \pm .0280 \bullet$	$.8030 \pm .0235 \bullet$
F-mnist2v5	$.9780 \pm .0027$	$.3214 \pm .2143 \bullet$	$.9446 \pm .0080 \bullet$	$.9714 \pm .0054 \bullet$	N/A	$.9394 \pm .0128 \bullet$	$.9761 \pm .0025 \bullet$
F-mnist3v4	$.8652 \pm .0056$	$.0166 \pm .0521 \bullet$	$.7928 \pm .0129 \bullet$	$.8193 \pm .0104 \bullet$	N/A	$.8271 \pm .0168 \bullet$	$.8407 \pm .0052 \bullet$
F-mnist7v9	$.8760 \pm .0058$	$.2930 \pm .1554 \bullet$	$.8100 \pm .0108 \bullet$	$.8291 \pm .0115 \bullet$	N/A	$.8376 \pm .0188 \bullet$	$.8399 \pm .0106 \bullet$
mnist1v7	$.9633 \pm .0034$	$.0036 \pm .0081 \bullet$	$.9325 \pm .0076 \bullet$	$.9457 \pm .0052 \bullet$	N/A	$.8937 \pm .0095 \bullet$	$.9196 \pm .0264 \bullet$
Average	$.7802 \pm .1090$	$.2922 \pm .2172$	$.6530 \pm .1877$	$.7233 \pm .1494$	—	$.7342 \pm .1134$	$.7503 \pm .1075$
Win/Tie/Loss		18/0/0	18/0/0	15/3/0	16/1/1	15/3/0	16/1/1

Our FPRDT: significantly better than other decision trees

- unprovable methods make local optimizations
- provable methods do not obtain good result due to high complexity

Accuracy comparisons for our PRAdaBoost

Dataset	PRAdaBoost	AdaBoost	Random forests	RGBDT	RIGDT forests	GROOT forests	PRBoosting
ionos	$.7960 \pm .0329$	$.0321 \pm .0137 \bullet$	$.1122 \pm .0353 \bullet$	$.5276 \pm .0472 \bullet$	$.6565 \pm .0414 \bullet$	$.7869 \pm .0346$	$.7755 \pm .0370$
breast	$.8793 \pm .0263$	$.0732 \pm .0156 \bullet$	$.2167 \pm .0193 \bullet$	$.7034 \pm .0648 \bullet$	$.8437 \pm .0280 \bullet$	$.8838 \pm .0251$	$.8694 \pm .0282 \bullet$
diabet	$.6635 \pm .0281$	$.1352 \pm .0156 \bullet$	$.4523 \pm .0411 \bullet$	$.4560 \pm .0371 \bullet$	$.5999 \pm .0371 \bullet$	$.6578 \pm .0210 \bullet$	$.6276 \pm .0325 \bullet$
bank	$.6680 \pm .0361$	$.4019 \pm .0619 \bullet$	$.5087 \pm .0292 \bullet$	$.4427 \pm .0333 \bullet$	$.5087 \pm .0292 \bullet$	$.6407 \pm .0308 \bullet$	$.6195 \pm .0403 \bullet$
Japan3v4	$.6816 \pm .0165$	$.4913 \pm .0231 \bullet$	$.5187 \pm .0184 \bullet$	$.5885 \pm .0099 \bullet$	$.6039 \pm .0171 \bullet$	$.6580 \pm .0160 \bullet$	$.6874 \pm .0167$
har1v2	$.8601 \pm .0162$	$.0092 \pm .0065 \bullet$	$.8326 \pm .0137 \bullet$	$.6417 \pm .0165 \bullet$	$.4998 \pm .0212 \bullet$	$.7917 \pm .0169 \bullet$	$.8653 \pm .0130$
spam	$.7540 \pm .0129$	$\bullet 0000. \pm 0000 \bullet$	•0000. \pm 0000.	$.4888 \pm .0349 \bullet$	$.6212 \pm .0202 \bullet$	$.7495 \pm .0130 \bullet$	$.7312 \pm .0101 \bullet$
GestDvP	$.7315 \pm .0165$	$.1031 \pm .0079 \bullet$	$.1887 \pm .0086 \bullet$	$.2420 \pm .0090 \bullet$	$.6459 \pm .0118 \bullet$	$.7314 \pm .0127$	$.7318 \pm .0179$
wine	$.6397 \pm .0069$	$.0002 \pm .0004 \bullet$	$.0910 \pm .0112 \bullet$	$.1068 \pm .0118 \bullet$	$.4161 \pm .0129 \bullet$	$.6329 \pm .0008 \bullet$	$.6356 \pm .0066$
cifar10:0v5	$.6906 \pm .0159$	$.0083 \pm .0035 \bullet$	$.3015 \pm .0058 \bullet$	$.3137 \pm .0095 \bullet$	$.4413 \pm .0094 \bullet$	$.5262 \pm .0123 \bullet$	N/A
cifar10:0v6	$.6958 \pm .0092$	$.0556 \pm .0041 \bullet$	$.3678 \pm .0103 \bullet$	$.3446 \pm .0091 \bullet$	$.5199 \pm .0082 \bullet$	$.5604 \pm .0098 \bullet$	N/A
cifar10:4v8	$.6710 \pm .0096$	$.0019 \pm .0014 \bullet$	$.2956 \pm .0074 \bullet$	$.2707 \pm .0103 \bullet$	$.4614 \pm .0074 \bullet$	$.4983 \pm .0068 \bullet$	N/A
mnist2v6	$.9437 \pm .0046$	$0000 \pm .0000$	•0000. \pm .0000	$.8442 \pm .0266 \bullet$	$.8999 \pm .0062 \bullet$	$.9249 \pm .0045 \bullet$	$.9365 \pm .0044 \bullet$
mnist3v8	$.8829 \pm .0106$	$0000 \pm .0000$	•0000. \pm 0000.	$.7155 \pm .0147 \bullet$	$.7756 \pm .0081 \bullet$	$.8228 \pm .0057 \bullet$	$.8680 \pm .0082 \bullet$
F-mnist2v5	$.9823 \pm .0028$	$.3852 \pm .0552 \bullet$	$.4561 \pm .0041 \bullet$	$.9645 \pm .0050 \bullet$	$.9654 \pm .0040 \bullet$	$.9791 \pm .0029 \bullet$	$.9843 \pm .0018$ \circ
F-mnist3v4	$.8674 \pm .0055$	$0000 \pm .0000$	$.0441 \pm .0311 \bullet$	$.7172 \pm .0131 \bullet$	$.8063 \pm .0064 \bullet$	$.8392 \pm .0063 \bullet$	$.8640 \pm .0054$
F-mnist7v9	$.8691 \pm .0066$	$\bullet 0000. \pm 0000 \bullet$	$.1357 \pm .0358 \bullet$	$.7401 \pm .0164 \bullet$	$.8282 \pm .0067 \bullet$	$.8359 \pm .0068 \bullet$	$.8779 \pm .0069$ \circ
mnist1v7	$.9752 \pm .0031$	$\bullet 0000. \pm 0000.$	•0000. \pm 0000.	$.7897 \pm .1170 \bullet$	$.9600 \pm .0032 \bullet$	$.9668 \pm .0031 \bullet$	$.9781 \pm .0028$
Average	$.7918 \pm .1134$	$.0943 \pm .1545$	$.2512 \pm .2279$	$.5499 \pm .2276$	$.6697 \pm .1763$	$.7492 \pm .1422$	
Win/Tie/Loss		18/0/0	18/0/0	18/0/0	18/0/0	15/3/0	9/7/2

Our PRAdaBoost: significantly better than other unprovable methods comparable with PRBoosting yet with smaller time

Guo, Teng, Gao, Zhou Fast Provably Robust Decision Trees and Boosting www.lamda.nju.edu.cn

Running time

Our approaches: faster than other provable robust methods comparable with unprovable robust methods

Guo, Teng, Gao, Zhou Fast Provably Robust Decision Trees and Boosting www.lamda.nju.edu.cn

In this work, we propose

- Fast Provably Robust Decision Tree (FPRDT) adversarial 0/1 loss, smallest computational complexity
- **Provably Robust AdaBoost (PRAdaBoost)** upper bound on adversarial exp. loss, smallest comp. complexity

Future work: other adversarial losses for robust decision trees

Thanks!