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New Generalization Bounds are

Needed in Modern Learning



Mysteries of Modern Machine Learning

Neural networks:

Severely over-parameterized.

Still generalize well?!
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Mysteries of Modern Machine Learning

Three keys to demystify — “Understanding Deep Learning is Also

a Job for Physicists” by Lenka Zdeborová
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Data-dependent Generalization

Bounds are Essential in Modern

Learning



Modern Dataset Structure

K is a partition of input space of real data sets; |TS | is the number

of partitions with non-zero data points.

Popolar modern datasets are very sparse! Actually, the

datasets are spares after projection, so they live on low

dimensional manifolds.
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Modern Dataset Structure

2-D visualization of Cifar-10’s representation embeddings after

projection.
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Traditional Generalization Bounds

Rademacher complexity bounds (Bartlett & Mendelson, 2002)

Uniform stability bounds (Bousquet & Elisseef, 2002)

Robust generalization bounds (Xu & Mannor, 2012)

All those bounds cannot directly take advantage of the input

data structure!
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Robust Generalization Bounds

Definition ( (K , ε(·))-robust)

1. Algorithm A : Zn → R;

2. The input space Z can be partitioned into K disjoint sets –

{Ck}Kk=1;

3. if s, z ∈ Ck , then |`(AS , s)− `(AS , z)| ≤ ε(S).
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Robust Generalization Bounds

Proposition (Xu & Mannor, 2012)

1. `(h, z) ≤ B;

2. A is (K , ε(·))-robust (with {Ck}Kk=1);

with probability at least 1− δ,

Ez [`(AS , z)] ≤ 1

n

n∑
i=1

`(AS , zi ) + ε(S) + B

√
2K ln 2 + 2 ln(1/δ)

n
.
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Why Robust Generalization Bounds?

Example (Xu & Mannor, 2012 (Lasso))
Z is compact, and loss function `(AS , z) = |z(y) −AS(z(x))|.
Lasso can be formulated as:

minimize
w

:
1

n

n∑
i=1

(s
(y)
i − w>s

(x)
i )2 + c‖w‖1.

This algorithm is (N (ν/2,Z, ‖ · ‖∞), ν( 1n
∑n

i=1(s
(y)
i )2)/c

+ ν)-robust for all ν > 0.
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Why Robust Generalization Bounds?

Example (Xu & Mannor, 2012 (PCA))
For Z ⊂ Rm, a set with the maximum `2 norm bounded by B,

with loss function

`((w1, . . . ,wd), z) =
d∑

j=1

(w>j z)2,

then finding the first d principal components via the optimization

problem:

Maximize:
n∑

i=1

d∑
j=1

(w>j si )
2

with the constraint that ‖wj‖2 = 1 and w>i wj = 0 for i 6= j is

(N (γ/2,Z, ‖ · ‖2), 2dγB)-robust, for all γ > 0.
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Our Bounds

Theorem

1. `(h, z) ≤ B;

2. A is (K , ε(·))-robust (with {Ck}Kk=1);

with probability at least 1− δ, the following holds:

Ez [`(AS , z)] ≤ 1

n

n∑
i=1

`(AS , zi ) + ε(S)

+ ζ(AS)

(
(
√

2 + 1)

√
|TS | ln(2K/δ)

n
+

2|TS | ln(2K/δ)

n

)
,

where ISk := {i ∈ [n] : zi ∈ Ck}, ζ(AS) := maxz∈Z{`(AS , z)}, and
TS := {k ∈ [K ] : |ISk | ≥ 1}.
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Comparisons

1. (Xu & Mannor, 2012) B
√

2K ln 2+2 ln(1/δ)
n

2. (Ours) ζ(AS)

(
(
√

2 + 1)
√
|TS | ln(2K/δ)

n + 2|TS | ln(2K/δ)
n

)

where ISk := {i ∈ [n] : zi ∈ Ck}, ζ(AS) := maxz∈Z{`(AS , z)}, and

TS := {k ∈ [K ] : |ISk | ≥ 1}.

K v.s. |TS |
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Comparisons

K � |TS |
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Theoretical Comparisons

Proposition

1. pk = P(z ∈ Ck) where p1 ≥ p2 ≥ · · · ≥ pK ;

2. pk decays as pk ≤ Ce−(k/β)
α
;

with probability at least 1− δ,

|TS | ≤ β(ln n)1/α + C (e − 1)
β

α
+ log(1/δ).
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Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is (N (ν/2,Z, ‖ · ‖∞), ν( 1n
∑n

i=1(s
(y)
i )2)/c +

ν)-robust for all ν > 0.

2. Consider z(y) ∈ R and z(x) ∈ Rd . Given any ν > 0, let

z follow a distribution Dz , such that z(x) = (x (1)
>
, x (2)

>
)>,

where x (1) ∼ N(0, Ip)|[−1,1]p . x (2) ∼ N(µ, σ2Ir )|[−1,1]r , and

r = d − p, z(y) = w∗>z(x), where ‖w∗‖1 ≤ 1.
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r = d − p, z(y) = w∗>z(x), where ‖w∗‖1 ≤ 1.

There exists parameters such that our bound is much tighter than

that in Proposition in Xu & Mannor as

|TS | = Θ((2/ν)p+1)� Θ((2/ν)d+1) = N (ν/2,Z, ‖ · ‖∞).
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Algorithmic Stability

Training sample: S.
A learning algorithm A : Zm → F outputs a function

AS ∈ F .

Definition (Uniform Stability(Bousquet & Elisseeff, 2002))

An algorithm A has uniform stability βUm with respect to the loss

function l if

|l(AS , z)− l(AS\i , z)| ≤ βUm

holds for all S ∈ Zm, 1 ≤ i ≤ m, and z ∈ Z.
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Theoretical Comparisons with Uniform Stability

Example (Regularized least square regression)

1. Let z(y) ∈ [0,B] and z(x) ∈ [0, 1]. The regularized least squares

regression is defined as AS = argminw
1
n

∑n
i=1 `(w , zi )+λ|w |2,

where `(w , z) = (w · z(x) − z(y))2 and w ∈ R.

2. Uniform stability: β ≤ 2B2

λn .

3. Consider z : z(y) = w∗ · z(x) + ε1(|ε| < B). In addition, z(x)

follows a continuous distribution on [0, 1].

With a probability of at least 1− δ, |TS | = Θ(2ν). Thus, if

B2/λ� 2/ν, then our bound is a far more precise bound than

that obtained via uniform stability.
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New Techniques

The key technical hurdle: to avoid an explicit
√
K dependence for

the following form:

K∑
i=1

ai (X )

(
pi −

Xi

n

)
,

where ai is an arbitrary function with ai (X ) ≥ 0 for all

i ∈ {1, . . . ,K}.
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New Techniques

Lemma

For any δ > 0, with probability at least 1− δ,

K∑
i=1

ai (X )

(
pi −

Xi

n

)
≤

(
K∑
i=1

ai (X )
√
pi

)√
2 ln(K/δ)

n
.

1. Lemma holds with ai (X ) = sign(pi − Xi
n ), where sign(q) is

the sign of q.

2. If pi = 1/K , recovers Bretagnolle-Huber-Carol inequality.

3. p1 ≈ 1, other pi ’s are ≈ 0, then
∑√

pi ≈ 1.

Our result interpolates between these cases!
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End

Thanks for listening!
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