T Harvard John A. Paulson

* School of Engineering
and Applied Sciences

Robustness Implies Generalization via
Data-Dependent Generalization Bounds

Zhun Deng*
Harvard University

* Joining Columbia University in fall as a postdoc.



Collaborators

Kenji Kawaguchi
Kyle Luh
Jiaoyang Huang



New Generalization Bounds are
Needed in Modern Learning



Mysteries of Modern Machine Learning
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Neural networks:

Severely over-parameterized.

Still generalize well?!
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Traditional generalization bounds can no longer work!



Mysteries of Modern Machine Learning
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Three keys to demystify — “Understanding Deep Learning is Also
a Job for Physicists” by Lenka Zdeborova



Data-dependent Generalization
Bounds are Essential in Modern
Learning



Modern Dataset Structure

100

MNIST  CIFAR10 CIFAR100 SVHN  FMNIST KMNIST SEMEION

K is a partition of input space of real data sets; |7s| is the number

of partitions with non-zero data points.

Popolar modern datasets are very sparse! Actually, the
datasets are spares after projection, so they live on low

dimensional manifolds.



Modern Dataset Structure
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2-D visualization of Cifar-10’s representation embeddings after

projection.



Traditional Generalization Bounds

Rademacher complexity bounds (Bartlett & Mendelson, 2002)
Uniform stability bounds (Bousquet & Elisseef, 2002)
Robust generalization bounds (Xu & Mannor, 2012)

All those bounds cannot directly take advantage of the input
data structure!



Robust Generalization Bounds

Definition ( (K, ¢(:))-robust)

1. Algorithm A : Z" — R;

2. The input space Z can be partitioned into K disjoint sets —

{Cia
3. if s,z € Cx, then [{(As,s) — U(As, z)| < €(S).



Robust Generalization Bounds

Proposition (Xu & Mannor, 2012)
1. ¢(h,z) < B;
2. Ais (K, e(-))-robust (with {Ck }K_, );

with probability at least 1 — 9,

2K In2+21In(1/5)
- .

E,[((As, 2)] < % D UAs, zi) +€(S) + B\/

i=1



Why Robust Generalization Bounds?

Example (Xu & Mannor, 2012 (Lasso))
Z is compact, and loss function £(As,z) = |z") — As(z™))].

Lasso can be formulated as:

.1 0 _ T (X
minimize : nZ(s. ) + c||w]1.

w .
i=1

This algorithm is (AV'(1/2, Z, || - [leo), (2 301 (s%))?) /
+ v)-robust for all v > 0.
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Why Robust Generalization Bounds?

Example (Xu & Mannor, 2012 (PCA))
For Z C R™, a set with the maximum ¢ norm bounded by B,

with loss function
d

E((le ) Wd)>z) = Z(WJTZ)27
j=1
then finding the first d principal components via the optimization

n d
Maximize: Z Z(WJ-TS,')2

i=1 j=1

problem:

with the constraint that ||w;||> = 1 and w,"w; = 0 for i # j is

(N(v/2,Z, || - ||2), 2dyB)-robust, for all v > 0.
1



Theorem
1. ¢(h,z) < B;
2. Ais (K, e(+))-robust (with {Ck}K_, );

with probability at least 1 — ¢, the following holds:

E,[{(As,z)] < % > U As,zi) +€(S)

i=1

+¢(As) ((\@Jr 1)

n

Ts[In(2K/5) , 2/Ts| ln(2K/5)>

where I,f ={i€[n]:z €Ck}, ((As) := max,ez{l(As,2)}, and
Ts = (k€ [K] : |Z5] > 1}.
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1. (Xu & Mannor, 2012) B \/@
2. (Ours) ¢(As) ( (V2 + 1)\/W 2|7'5\|n 2K /5) >

where I,f ={i€[n]:z €Ck} ((As) := maxyez{l(As,z)}, and
Ts = {(k € [K] : |Z5] > 1}.
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1. (Xu & Mannor, 2012) B \/@
2. (Ours) ¢(As) ( (V2 + 1)\/W 2|7'5\|n 2K /5) >

where I,f ={i€[n]:z €Ck} ((As) := maxyez{l(As,z)}, and
Ts = {(k € [K] : |Z5] > 1}.

Kvs. |Ts|
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Comparisons
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Figure 3. The values of K versus | 75| with real-world data and
the e-covering. The values of |Ts| are extremely small compared

to those of K’ in all datasets.
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MNIST  CIFAR-10CIFAR-100 SVHN ~ FMNIST KMNIST SEMEION
Figure 4. The values of K versus | 75| with real-world data and
the clustering using unlabeled data. With clustering to reduce K.,
we still have |7s| < K. Here, |Ts| was close to zero for Semeion.
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Figure 5. The values of K versus |T5| with real-world data and
random projection. With random projection to reduce K., we still
have 75| < 30 < K = 100 < n ~ 60,000 for the real-life
datasets. Here, n is the full train data size of each dataset: e.g.,
n = 60,000 for MNIST.

|7s|
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Theoretical Comparisons

Proposition

1. px =P(z € Cx) where py > pp > -+ > pk;
2. py decays as py < Ce=(K/B)";

with probability at least 1 — ¢,
p

[Ts| < B(n )"/ + Ce — 1)~ +log(1/0).
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Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is (M (v/2, Z, | - [|e), ¥(: S50 1( ) )/c+
v)-robust for all v > 0.

2. Consider z¥) € R and z¥) € RY. Given any v > 0, let
z follow a distribution D, such that z(®) = (x(l)T,x(2)T)T,
where x(M) ~ N(0, ,)|_1.1pp. x@ ~ N(u,02)|[_1.1), and
r=d—p, z) = w Tz where |w*|; <1.
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Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is (M (v/2, Z, | - [|e), ¥(: S50 1( ) )/c+
v)-robust for all v > 0.

2. Consider z¥) € R and z¥) € RY. Given any v > 0, let
z follow a distribution D, such that z(®) = (x(l)T,x(2)T)T,
where x(M) ~ N(0, ,)|_1.1pp. x@ ~ N(u,02)|[_1.1), and
r=d—p, z) = w Tz where |w*|; <1.

p{w
[
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Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is (M (v/2, Z, | - [|e), ¥(2 320 1( ) )/c+
v)-robust for all v > 0.

2. Consider z) € R and z®) € R?. Given any v > 0, let
z follow a distribution D,, such that z(*) = (X(I)T,X(z)T)T,
where x(1) ~ N(O, Ip)|[—1,13°- x(@) ~ N(,u,o2l,)\[,171]r, and
r=d—p, z0) = w Tz, where |w*|; < 1.
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Theoretical Comparisons

Example (Lasso)

1. Recall that Lasso is (M (v/2, Z, | - [|e), ¥(2 320 1( ) )/c+
v)-robust for all v > 0.

2. Consider z) € R and z®) € R?. Given any v > 0, let
z follow a distribution D,, such that z(*) = (X(I)T,X(z)T)T,
where x(1) ~ N(O, Ip)|[—1,13°- x(@) ~ N(,u,o2l,)\[,171]r, and
r=d—p, z0) = w Tz, where |w*|; < 1.

There exists parameters such that our bound is much tighter than
that in Proposition in Xu & Mannor as
[Tsl = ©((2/v)P*h) < ©((2/v)* ) = N(v/2, 2, - l|o)-
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Algorithmic Stability
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Algorithmic Stability

Training sample: S.
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Algorithmic Stability

Training sample: S.

A learning algorithm 7 : Z™ — F outputs a function
As € F.
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Algorithmic Stability

Training sample: S.
A learning algorithm 7 : Z™ — F outputs a function
As € F.

Definition (Uniform Stability(Bousquet & Elisseeff, 2002))

An algorithm .7 has uniform stability 5% with respect to the loss

function [ if

“(AS7Z) - I(AS\iaZ)| < Brl;:

holds forall S€ Z™. 1 <i<m, and z € Z.

18



Theoretical Comparisons with Uniform Stability

Example (Regularized least square regression)

1. Let z0) € [0, B] and z(9) € [0,1]. The regularized least squares
regression is defined as As = argmin,, >0 4(w, z;)+A|w|?,
where £(w, z) = (w - z) — z0)2 and w € R,

2. Uniform stability: < %.

3. Consider z: z") = w* . 209 1 €1(|e| < B). In addition, z¥)
follows a continuous distribution on [0, 1].

With a probability of at least 1 — ¢, |Ts| = ©(2v). Thus, if
B2/\ > 2/v, then our bound is a far more precise bound than
that obtained via uniform stability.
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New Techniques

The key technical hurdle: to avoid an explicit v'K dependence for

the following form:

Zai(x) <Pi - );') )

i=1

where a; is an arbitrary function with a;(X) > 0 for all
ie{l,...,K}.

20



New Techniques

Lemma
For any § > 0, with probability at least 1 — 9,

K K
> ai(X) <Pi_ i') < (Z ai“)ﬁ) 2In(:</5)

i=1 i=1

1. Lemma holds with a;(X) = sign(p; — %) where sign(q) is
the sign of q.
2. If pi = 1/K, recovers Bretagnolle-Huber-Carol inequality.

3. p1 = 1, other p;'s are = 0, then )~ /p; = 1.

21



New Techniques

Lemma
For any § > 0, with probability at least 1 — 9,

K K
> ai(X) <Pi_ i') < (Z ai“)ﬁ) 2In(:</5)

i=1 i=1

1. Lemma holds with a;(X) = sign(p; — %) where sign(q) is
the sign of q.
2. If pi = 1/K, recovers Bretagnolle-Huber-Carol inequality.

3. p1 =~ 1, other p;'s are = 0, then >_ ,/p; =~ 1.
Our result interpolates between these cases!
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Thanks for listening!
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