

Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning

Ling Yang, Shenda Hong

Presenter : Ling Yang

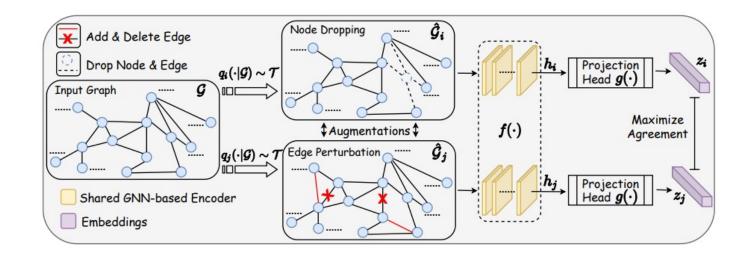
Contact : yangling0818@163.com

Contents

- Related Work and Limitations
- Proposed Method
- Results and Analysis

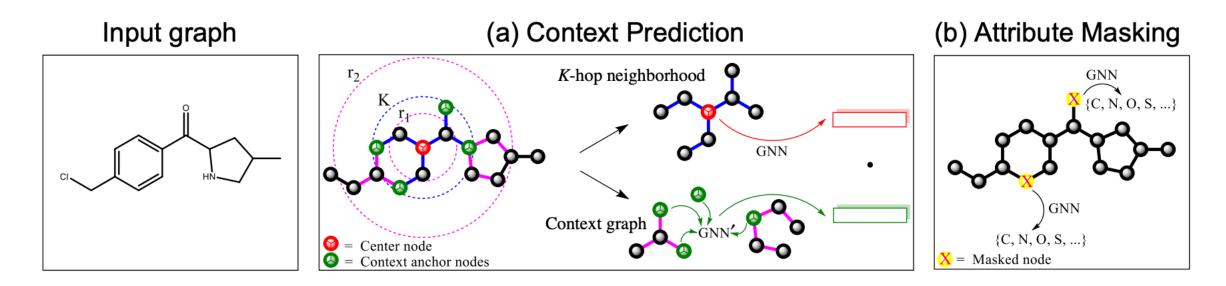
• Self-Supervised/Unsupervised Graph Representation Learning

Contrastive



You Y, Chen T, Sui Y, et al. Graph contrastive learning with augmentations[J]. Advances in Neural Information Processing Systems, 2020, 33: 5812-5823.

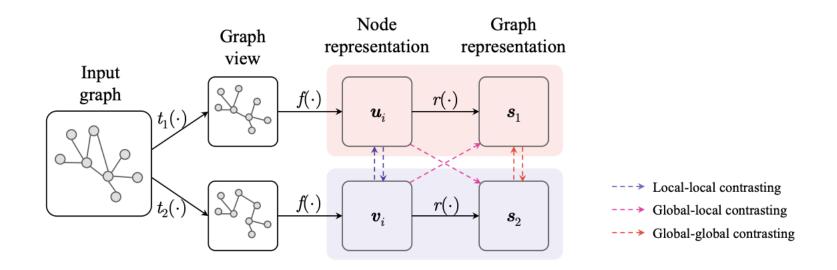
• Self-Supervised/Unsupervised Graph Representation Learning



Predictive

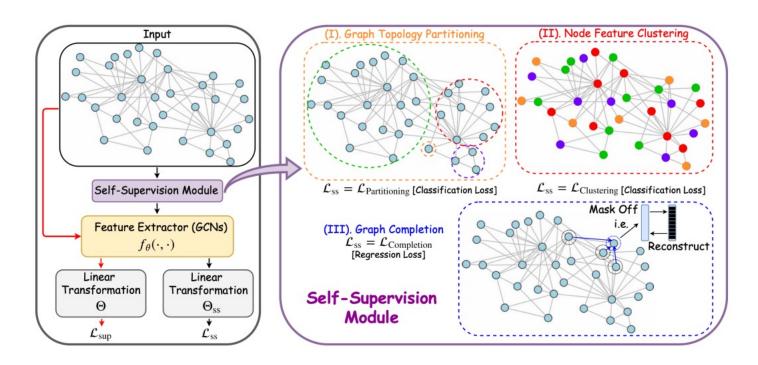
Hu W, Liu B, Gomes J, et al. Strategies for Pre-training Graph Neural Networks[C]//International Conference on Learning Representations. 2019.

• Global-Level Self-Supervised Objectives



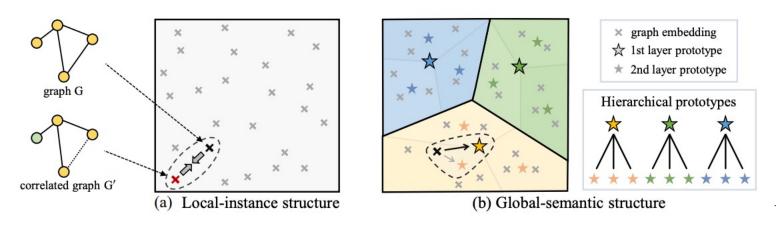
Zhu Y, Xu Y, Liu Q, et al. An empirical study of graph contrastive learning[J]. arXiv preprint arXiv:2109.01116, 2021.

• Global-Level Self-Supervised Objectives



You Y, Chen T, Wang Z, et al. When does self-supervision help graph convolutional networks?[C]//international conference on machine learning. PMLR, 2020: 10871-10880.

• Global-Level Self-Supervised Objectives



Algorithm 1 Optimization Algorithm of GraphLoG.
Input: Unlabeled graph data set G , the number of
learning steps T.
Output: Pre-trained GNN model GNN_{θ_T} .
Pre-train GNN with local objective function (Eq. 9).
Initialize model parameters θ_0 and \mathbf{C}_0 .
for $t = 1$ to T do
Sample a mini-batch $\widetilde{\mathbf{G}}$ from \mathbf{G} .
\diamond <i>E-step</i> :
Sample latent variables $\widetilde{\mathbf{Z}}_{est}$ with $\text{GNN}_{\theta_{t-1}}$ and \mathbf{C}_{t-1} .
\Diamond <i>M</i> -step:
Update model parameters:
$ heta_t \leftarrow heta_{t-1} - abla_ heta(\mathcal{L}_ ext{local} + \mathcal{L}_ ext{global}),$
$\mathbf{C}_t \leftarrow \mathbf{C}_{t-1} - abla_{\mathbf{C}}(\mathcal{L}_{ ext{local}} + \mathcal{L}_{ ext{global}}).$
end for

Xu M, Wang H, Ni B, et al. Self-supervised graph-level representation learning with local and global structure[C]//International Conference on Machine Learning. PMLR, 2021: 11548-11558.

Limitations of Existing Methods

- Implicit utilization of global semantic with additional supervisions
- Global semantic information is invariant for all nodes/graphs
- Global semantic information cannot be applied in downstream tasks

Our Contributions

- We firstly explicitly characterize the **instance-adaptive global-aware** feature by ego-semantic descriptors
- We propose an omni-granular normalization **over all the hierarchies and scales of ego-semantic**
- Specialized tasks and a **cross-iteration omni-granular momentum update** are both proposed for achieving local-global mutual adaptation in our framework
- Our OEPG substantially outperforms previous in multiple downstream tasks on datasets cross scales and domains, and generalizes to quantity- and topologyimbalance scenarios

• Overview of Omni-Granular Ego-Semantic Propagation

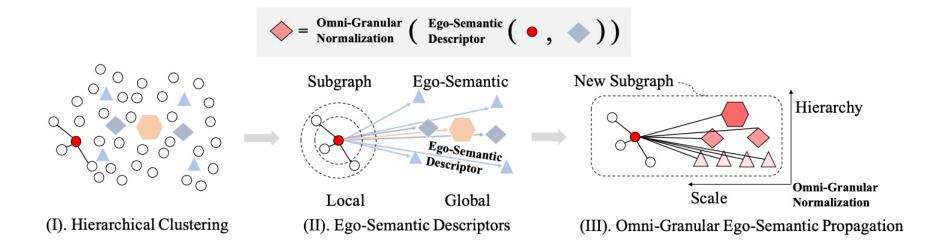


Figure 1. Illustration of OEPG. (I) Obtain hierarchical global clusters. (II) Explicitly define instance-adaptive global-aware ego-semantic descriptors by measuring first- and second-order feature differences between target node (denoted in red) and hierarchical clusters. (III) Perform omni-granular normalization on ego-semantic descriptors and use them to form new subgraph for later feature propagation.

1. Ego-Semantic Descriptor

The First-Order Ego-Semantic Descriptor

Definition 3.1. For *s*-th cluster in *h*-th hierarchy, where $h \in [1, H]$, $s \in [1, S_h]$, then the first-order ego-semantic descriptor $\mathbf{D}_{s,h}^{1st} \in \mathbb{R}_d$ for target \mathbf{V}^{target} is defined as:

$$\mathbf{D}_{s,h}^{1st} = (\mathbf{V}^{target} - \mathbf{C}_{s,h}) / ||\mathbf{V}^{target} - \mathbf{C}_{s,h}||_2, \quad (2)$$

where we derive $\mathbf{V}^{target}/||\mathbf{V}^{target} - \mathbf{C}_{s,h}||_2 = f^t \in \mathbb{R}^d$, $\mathbf{C}_{s,h}/||\mathbf{V}^{target} - \mathbf{C}_{s,h}||_2 = f^c_{s,h} \in \mathbb{R}^d$, and we specify $\mathbf{D}^{1st}_{s,h}$ as ([d] denotes d-th dimension):

$$[f^{t}[1] - f^{c}_{s,h}[1], \cdots, f^{t}[d] - f^{c}_{s,h}[d]].$$
(3)

The Second-Order Ego-Semantic Descriptor

Definition 3.2. For *s*-th cluster in *h*-th hierarchy, where $h \in [1, H], s \in [1, S_h]$, the second-order ego-semantic descriptor $\mathbf{D}_{s,h}^{2nd} \in \mathbb{R}^{(S_1+S_2+\cdots+S_H)}$ for \mathbf{V}^{target} is:

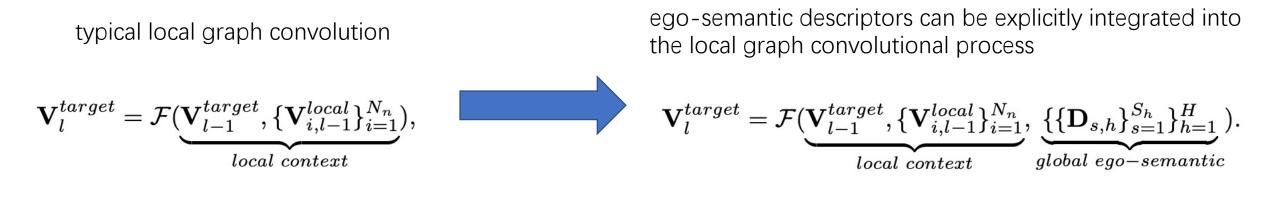
$$\mathbf{X} = [\mathbf{D}_{1,1}^{1st} \bullet \mathbf{D}_{s,h}^{1st}, \cdots, \mathbf{D}_{S_H,H}^{1st} \bullet \mathbf{D}_{s,h}^{1st}],$$
$$\mathbf{D}_{s,h}^{2nd} = \mathbf{X}/||\mathbf{X}||_2,$$
(4)

where \bullet is the inner product. X is further specified as:

$$\left[\sum_{i=1}^{d} (f^{t}[i] - f^{c}_{1,1}[i])(f^{t}[i] - f^{c}_{s,h}[i]), \cdots, \right]$$

$$\sum_{i=1}^{d} (f^{t}[i] - f^{c}_{S_{H},H}[i])(f^{t}[i] - f^{c}_{s,h}[i])\right]$$
(5)

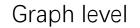
1. Ego-Semantic Descriptor



2. Omni-Granular Normalization

$$\bar{\mathbf{D}}_{s,h}^{1st} = a_{s,h}^{1st} \cdot \mathbf{D}_{s,h}^{1st} = \frac{e^{-\alpha ||\mathbf{D}_{s,h}^{1st}||^2}}{\sum\limits_{m=1}^{H}\sum\limits_{k=1}^{S_m} e^{-\alpha ||\mathbf{D}_{k,m}^{1st}||^2}} \cdot \mathbf{D}_{s,h}^{1st},$$

$$\begin{bmatrix} A[local, local] = A_{ori} & A[target, global] = 1 \\ A[neighbors, global] = 0 \\ A[global, target] = 1 \\ A[global, neighbors] = 0 & A[global, global] = 0 \end{bmatrix}$$



$$\begin{bmatrix} A[local, local] = A_{ori} & A[local, global] = 1 \\ A[global, local] = 1 & A[global, global] = 0 \end{bmatrix}$$

 $\bar{\mathbf{D}}_{s,h}^{2nd} = \frac{e^{-\beta ||\mathbf{D}_{s,h}^{2nd}||^2}}{\sum_{m=1}^{H} \sum_{k=1}^{S_m} e^{-\beta ||\mathbf{D}_{k,m}^{2nd}||^2}} \cdot \mathbf{D}_{s,h}^{2nd}.$

 $\mathbf{D}_{s,h} = \text{LeakyReLU}(\mathbf{W} \cdot \text{Concat}(\bar{\mathbf{D}}_{s,h}^{1st}, \bar{\mathbf{D}}_{s,h}^{2nd})),$

3. Specialized Local-Global Pretext Tasks

$$\mathcal{L}_{contrastive} = -\mathbb{E}_{\mathcal{G}\sim p(\mathcal{G})}[sim(\mathcal{F}(T_i(\mathcal{G})), \mathcal{F}(T_j(\mathcal{G})))] + \mathbb{E}_{\mathcal{G}_-\sim p(\mathcal{G}_-)}[sim(\mathcal{F}(T_i(\mathcal{G})), \mathcal{F}(T_j(\mathcal{G}_-)))],$$
(14)

$$\mathcal{L}_{predictive} = -\mathbb{E}_{\mathcal{G}\sim p(\mathcal{G})} \log(\sigma(\mathcal{F}(\mathcal{G}_1) \cdot \mathcal{F}_{aux}(\mathcal{G}_2))),$$
(15)

4. Cross-Iteration Omni-Granular Momentum Update

$$s = \operatorname*{argmax}_k(sim(\mathbf{V}, \{\mathbf{C}_{k,h}\}_{k=1}^{S_h})).$$

Instead of updating node queue after each training iteration, we construct a node queue $\{\mathbf{Q}_{s,h,i}\}_{i=1}^{i \in [1,\mathcal{B}]}$ with a budget \mathcal{B} for each cluster. If the number of nodes in a queue equals to the \mathcal{B} , the corresponding cluster will be update as follow:

$$\mathbf{C}_{s,h} \longleftarrow m \mathbf{C}_{s,h} + \frac{(1-m)}{\mathcal{B}} \sum_{i=1}^{\mathcal{B}} \mathbf{Q}_{s,h,i}, \qquad (17)$$

4. Full pipeline

Algorithm 1 Algorithm of OEPG

Input: Unlabeled graph dataset G, the number of training steps T. **Output:** Pre-trained GNN model $GNN_{\theta_{\mathcal{T}}}$. Initialize the model parameters θ_0 with local pre-training. Initialize multi-granular clusters $\{\{\mathbf{C}_{s,h}\}_{s=1}^{S_h}\}_{h=1}^{H}$. Initialize node queue $\{\mathbf{Q}_{s,h}\}$ for each $\mathbf{C}_{s,h}$. for t = 1 to T do Sample a mini-batch subgraphs $\{\mathcal{G}_i\}_{i=1}^N \in \mathbf{G}$. for i = 1 to N do if $size({\mathbf{Q}_{s,h}}) = max \ budget \ \mathcal{B}$ then Update $C_{s,h}$ with Eq.16,17, empty $\{Q_{s,h}\}$. else Enqueue target node $V_i \in \mathcal{G}_i$ to $\{\mathbf{Q}_{\mathbf{s},\mathbf{h}}\}$. end if (1). Obtain 1st, 2nd order ego-semantic descriptors $\{\{\mathbf{D}_{s,h}^{1st}\}_{s=1}^{S_h}\}_{h=1}^{H}, \{\{\mathbf{D}_{s,h}^{2nd}\}_{s=1}^{S_h}\}_{h=1}^{H} \text{ for target node} \}$ according to Eq.2,4. (2). Omni-granular norm on $\mathbf{D}_{s,h}^{1st}$, $\mathbf{D}_{s,h}^{2nd}$, and combine them to get $\mathbf{D}_{s,h}$ with Eq.9,10,11. (3). Integrate $\{\{\mathbf{D}_{s,h}\}_{s=1}^{S_h}\}_{h=1}^H$ with \mathcal{G}_i to form new subgraph \mathcal{G}_{i}^{new} according to Eq.13. end for Update model parameters θ_t according to Eq.14, 15.

end for

Results and Analysis

Table 1. Downstream test accuracy (%) in self-supervised learning. The compared results are from the published papers.

Methods	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B
NODE2VEC (GROVER & LESKOVEC, 2016)	54.9 ± 1.6	57.5 ± 3.6	-	72.6 ± 10.2	-	-	-	-
SUB2VEC (ADHIKARI ET AL., 2018)	$52.8 {\pm} 1.5$	$53.0{\pm}5.6$	-	61.1 ± 15.8	-	$71.5 {\pm} 0.4$	$36.7 {\pm} 0.4$	$55.3 {\pm} 1.5$
GRAPH2VEC (NARAYANAN ET AL., 2017)	73.2 ± 1.8	73.3 ± 2.1	-	83.2 ± 9.3	-	$75.8 {\pm} 1.0$	$47.9 {\pm} 0.3$	71.1 ± 0.5
GAE (KIPF & WELLING, 2016B)	-	-	-	$87.7 {\pm} 0.7$	-	$87.1 {\pm} 0.1$	$52.8 {\pm} 0.2$	$70.7 {\pm} 0.7$
MVGRL (HASSANI & KHASAHMADI, 2020)	-	-	-	$75.4{\pm}7.8$	-	82.0 ± 1.1	-	$63.6 {\pm} 4.2$
INFOGRAPH (SUN ET AL., 2019)	76.2 ± 1.1	$74.4 {\pm} 0.3$	$72.9 {\pm} 1.8$	$89.0 {\pm} 1.1$	70.7 ± 1.1	82.5 ± 1.4	$53.5 {\pm} 1.0$	$73.0{\pm}0.9$
GRAPHCL (YOU ET AL., 2020A)	$77.9 {\pm} 0.4$	$74.4 {\pm} 0.5$	$78.6 {\pm} 0.4$	$86.8 {\pm} 1.3$	71.4 ± 1.2	$89.5{\pm}0.8$	$56.0 {\pm} 0.3$	$71.1 {\pm} 0.4$
JOAO (YOU ET AL., 2021)	$78.4 {\pm} 0.5$	74.1 ± 1.1	77.4 ± 1.2	$87.7 {\pm} 0.8$	69.3 ± 0.3	86.4 ± 1.5	$56.0 {\pm} 0.3$	$70.8 {\pm} 0.3$
ADGCL (SURESH ET AL., 2021)	$69.7 {\pm} 0.5$	$73.8 {\pm} 0.5$	$75.1 {\pm} 0.4$	$89.7 {\pm} 1.0$	$73.3 {\pm} 0.6$	$85.5{\pm}0.8$	$54.9 {\pm} 0.4$	$72.3 {\pm} 0.6$
INFOGCL (XU ET AL., 2021A)	$80.2{\pm}0.6$	-	-	91.2 ± 1.3	80.0 ± 1.3	-	-	$75.1 {\pm} 0.9$
DGCL (LI ET AL., 2021)	$81.9{\pm}0.2$	$76.4{\pm}0.5$	-	$92.1 {\pm} 0.2$	$81.2{\pm}0.3$	$92.7{\pm}0.2$	$56.1 {\pm} 0.2$	$75.9{\pm}0.7$
OEPG (OURS)	84.8 ±0.4	79.6 ±0.7	81.4 ±0.9	95.3 ±0.6	84.7 ±0.7	96.3 ±0.9	60.5 ±0.3	78.5±0.6

Table 2. Downstream test ROC-AUC (%) in transfer learning. The compared results are from the published papers.

METHODS	BBBP	Tox21	TOXCAST	SIDER	CLINTOX	MUV	HIV	BACE
EDGEPRED (KIPF & WELLING, 2016B)	67.3±2.4	$76.0{\pm}0.6$	64.1±0.6	$60.4{\pm}0.7$	64.1±3.7	74.1±2.1	76.3±1.0	79.9±0.9
INFOGRAPH (SUN ET AL., 2019)	$68.2 {\pm} 0.7$	$75.5 {\pm} 0.6$	63.1 ± 0.3	$59.4 {\pm} 1.0$	$70.5 {\pm} 1.8$	$75.6 {\pm} 1.2$	$77.6 {\pm} 0.4$	$78.9 {\pm} 1.1$
ATTRMASKING (HU ET AL., 2020B)	$64.3 {\pm} 2.8$	$76.7 {\pm} 0.4$	$64.2 {\pm} 0.5$	$61.0 {\pm} 0.7$	$71.8 {\pm} 4.1$	$74.7 {\pm} 1.4$	77.2 ± 1.1	$79.3 {\pm} 1.6$
CONTEXTPRED (RONG ET AL., 2020)	$68.0{\pm}2.0$	$75.7 {\pm} 0.7$	$63.9 {\pm} 0.6$	$60.9 {\pm} 0.6$	$65.9 {\pm} 3.8$	$75.8 {\pm} 1.7$	$77.3 {\pm} 1.0$	79.6 ± 1.2
GRAPHPARTITION (YOU ET AL., 2020B)	$70.3 {\pm} 0.7$	$75.2{\pm}0.4$	$63.2 {\pm} 0.3$	$61.0{\pm}0.8$	$64.2 {\pm} 0.5$	$75.4{\pm}1.7$	$77.1 {\pm} 0.7$	$79.6{\pm}1.8$
GRAPHCL (YOU ET AL., 2020A)	$69.5 {\pm} 0.5$	$75.4{\pm}0.9$	$63.8 {\pm} 0.4$	$60.8 {\pm} 0.7$	70.1 ± 1.9	74.5 ± 1.3	$77.6 {\pm} 0.9$	78.2 ± 1.2
JOAO (YOU ET AL., 2021)	$71.4{\pm}0.9$	$74.3 {\pm} 0.6$	$63.2 {\pm} 0.5$	$60.5 {\pm} 0.7$	$81.0 {\pm} 1.6$	$73.7 {\pm} 1.0$	77.5 ± 1.2	$75.5 {\pm} 1.3$
GRAPHLOG (XU ET AL., 2021B)	$72.5{\pm}0.8$	$75.7{\pm}0.5$	$63.5{\pm}0.7$	61.2 ± 1.1	76.7 ± 3.3	$76.0{\pm}1.1$	$77.8{\pm}0.8$	83.5±1.2
OEPG (OURS)	75.7 ±0.6	79.2 ±0.7	66.2 ±0.4	64.1 ±0.9	84.5 ±1.7	81.6 ±1.4	81.3 ±0.9	85.2 ±1.3

Results and Analysis

Table 3. Downstream test accuracy (%) in semi-supervised learning. The compared results are from the published papers.

Methods	WIKICS	AMAZON COMPUTERS	AMAZON PHOTOS	COAUTHOR CS	COAUTHOR PHYSICS
DGI (VELIČKOVIĆ ET AL., 2018)	$75.4{\pm}0.1$	$84.0 {\pm} 0.5$	91.6±0.2	$92.2{\pm}0.6$	94.5±0.5
GMI (PENG ET AL., 2020)	$74.9 {\pm} 0.1$	$82.2 {\pm} 0.3$	$90.7 {\pm} 0.2$	OOM	OOM
MVGRL (HASSANI & KHASAHMADI, 2020)	$77.5 {\pm} 0.1$	$87.5 {\pm} 0.1$	$91.7{\pm}0.1$	92.1 ± 0.1	$95.3 {\pm} 0.1$
GBT (BIELAK ET AL., 2021)	$77.3 {\pm} 0.6$	$88.0 {\pm} 0.3$	$92.2{\pm}0.4$	$92.9 {\pm} 0.3$	$95.2{\pm}0.1$
GRACE (ZHU ET AL., 2020)	$80.1 {\pm} 0.5$	$89.5 {\pm} 0.4$	$92.8{\pm}0.5$	91.1 ± 0.2	OOM
GCA (ZHU ET AL., 2021B)	$78.4{\pm}0.1$	$88.9 {\pm} 0.2$	$92.5 {\pm} 0.2$	93.1 ± 0.1	$95.7 {\pm} 0.1$
CCA (ZHANG ET AL., 2021A)	-	$88.7 {\pm} 0.3$	93.1 ± 0.1	$93.3 {\pm} 0.2$	$95.4{\pm}0.1$
BGRL (THAKOOR ET AL., 2021)	$79.4{\pm}0.5$	89.7±0.3	$92.9 {\pm} 0.3$	$93.2{\pm}0.1$	$95.6 {\pm} 0.1$
OEPG (OURS)	83.3 ±0.3	91.9 ±0.5	95.1 ±0.4	95.4 ±0.1	97.3 ±0.1

Table 4. Test Macro-F1 (%) in semi-supervised learning. The imbalance ratio (I.R.) is set to different levels (5%, 10%) to test under different imbalance intensities. The supervised method is Chen et al. (2021)).

DATASETS	COAUT	HOR CS	COAUTHOR PHYSICS		
I.R.	5%	10%	5%	10%	
SUPERVISED GRAPHCL JOAO DGCL OEPG	75.3 ± 4.1 77.8 ± 3.9 80.4 ± 3.2	81.3 ± 3.2 72.2 \pm 5.3 74.6 \pm 4.5 78.1 \pm 3.5 83.4 \pm 2.1	72.4 \pm 2.6 68.2 \pm 4.6 67.4 \pm 4.1 69.5 \pm 3.9 75.9 \pm 2.2	66.5 ± 4.9 66.0 ± 4.8 67.1 ± 3.9	

Table 5. Semi-supervised learning on large-scale OGB datasets on (accuracy in % on ogbg-ppa, F1 score in % on ogbg-code, ROC-AUC in % on ogbg-molhiv). L.R. denotes the label ratio.

L.R.	METHODS	PPA	CODE	MOLHIV
1%	GRAPHCL JOAO DGCL OEPG	40.8±1.3 47.2±1.3 - 52.7 ±1.2	7.6 ± 0.3 6.8 ± 0.3 9.1 ±0.4	67.6±1.6 69.0±1.7 74.2 ±1.6
10%	GRAPHCL JOAO DGCL OEPG	57.8±1.3 60.9±0.8 - 64.4 ±0.7	$22.5\pm0.2 \\ 22.1\pm0.3 \\ -$ 24.8 ±0.3	70.6±1.6 73.6±1.5 77.5 ±1.7

Results and Analysis

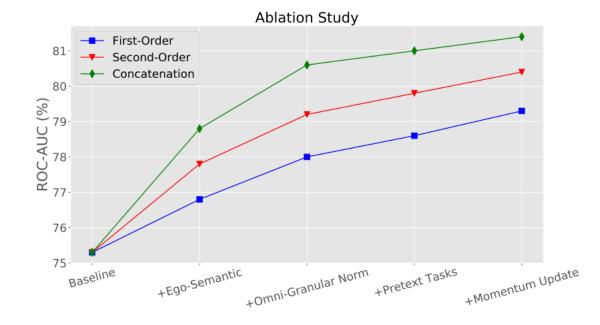


Figure 2. Ablation study on MUV dataset.

Thank You!