Efficient PAC Learning from the
Crowd with Pairwise Comparisons

Shiwei Zeng Jie Shen
Stevens Institute of Technology  Stevens Institute of Technology



Crowdsourced PAC Learning



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84]



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84]

 Given samples (x,y)



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84]

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84]

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84|

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H

+ w*
+ & ,\
P =W
+ -
s
_ a:/ -
- ”



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84]

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H

+ w*
+ ”W
&
+ - -
=
_ a:/ -

- P _

P 4 -

e Goal: W is Probably Approximately Correct.



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84|

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H

+ w*
+ ”W
&
+ - -
=
_ a:/ -

- P _

P 4 -

e Goal: W is Probably Approximately Correct.

Crowdsourced PAC learning [ABHM17]



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84|

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H

+ w’*
+ P4 —~
P =W
+ -
-~
_ a:/ -
- 7’ _
P 4 -

e Goal: W is Probably Approximately Correct.

Crowdsourced PAC learning [ABHM17]

* yisnotgiven



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84|

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H

+ w*
+ & ,\
P =W
+ -
-~
_ a:/ -
- 7’ _
P 4 -

e Goal: W is Probably Approximately Correct.

Crowdsourced PAC learning [ABHM17]

* yisnotgiven
* Butcan collect {y;, ..., yi} from crowd



Crowdsourced PAC Learning

Standard PAC learning [Valiant 84|

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H

+ w’*
+ P4 —~
P =W
+ -
-~
_ a:/ -
- 7’ _
P 4 -

e Goal: W is Probably Approximately Correct.

Crowdsourced PAC learning [ABHM17]

* yisnotgiven
* Butcan collect {y;, ..., yi} from crowd




Crowdsourced PAC Learning

Standard PAC learning [Valiant 84|

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H

+ w’*
+ P4 —~
P =W
+ -
-~
_ a:/ -
- 7’ _
P 4 -

e Goal: W is Probably Approximately Correct.

Crowdsourced PAC learning [ABHM17]

* yisnotgiven
* Butcan collect {y;, ..., yi} from crowd




Crowdsourced PAC Learning

Standard PAC learning [Valiant 84|

 Given samples (x,y)

* Assume y = h(x) for some unknown
hypothesis h € H

+ w’*
+ P4 —~
P =W
+ -
-~
_ a:/ -
- 7’ _
P 4 -

e Goal: W is Probably Approximately Correct.

Crowdsourced PAC learning [ABHM17]

* yisnotgiven
* Butcan collect {y;, ..., yi} from crowd




Motivation



Motivation




Motivation

* Label-and-train: k = log m for each x.



Motivation

=22 (v e V) y

* Label-and-train: k = log m for each x.

* Can we achieve k =0(1) ?



Motivation

=22 (v e V) y

* Label-and-train: k = log m for each x.

* Can we achieve k =0(1) ? — Query-efficient.



Motivation



Motivation

* Recommendation system:



Motivation

* Recommendation system:

TOM CRUISE
MARVELSTIS iM&EﬂBK.'-
Dooon St
MULTIVERSE. OF MADNESS

ce .
3 ) r [ONLY IN THEATRES
MAY 6 e R NA T

+)}




Motivation

* Recommendation system:

TOM CRUISE

TSMAVERIGK™ E
MULTIVERSE OF MADNESS

ce .
3 ) r [ONLY IN THEATRES
MAY 6 e R NA T

Prefer which one?



Motivation

* Recommendation system:

IM CRUISE

i “SMAVERICK™
DR S
MULTIVERSE OF MADNESS

|- , R
: i P [ONLY IN THEATRES
MAY 6 En e ey 27

Prefer which one?

X

* Covid-19 diagnosis:



Motivation

* Recommendation system: * Covid-19 diagnosis:

- .'
MAVERICK
NIRVELSTIOES ~——

MULTIVERSE OF MADNESS

MAY 6

+) P
A‘.-.“; v

Prefer which one?



Motivation

* Recommendation system: * Covid-19 diagnosis:

MARVEL STUDIOS

MULTIVERSE OF MADNESS

MAY 6

Prefer which one? Which one is healthier?



Motivation
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e Pairwise comparisons: f(x) >’ f(x")
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Our results

e PAC guarantees: w.p. 1-6, error < €.
* No distributional assumptions.

* Query and label-efficient.

~ - 1/1000
* #lLabels = 0(log df/a), #pairwise comparisons = 0(d+(1/6€) ).
) ) C ) i )
#Label per instance: #Comparison per instance:
€ . d — ,d
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* Whene - 0,4; =0(1), A, = 0(1).
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See you at poster session!



