Instance Dependent Regret Analysis of Kernelized Bandits

ICML 2022

Shubhanshu Shekhar (CMU) Tara Javidi (UCSD)

Problem Setup

- Unknown objective $f: [0,1]^d \rightarrow \mathbb{R}$
- *f* can be accessed via zeroth-order-oracle
- Assumptions:
 - $f \in \mathsf{RKHS}$ of a kernel K, with norm $\leq M$
 - The noise η is i.i.d. $N(0, \sigma^2)$ with a known σ^2

Objective: Given a budget n, design an adaptive querying strategy (A) to choose points $x_1, x_2, ..., x_n$ such that the cumulative regret $\mathcal{R}_n(f, A)$ is small, where

$$\mathcal{R}_n(f,\mathcal{A}) = nf(x^*) - \sum_{i=1}^n f(x_i)$$

Prior Results: Minimax Framework

• Scarlett et al. (2017) showed that for Matern kernels with smoothness ν

$$\min_{\mathcal{A}} \max_{f \in \mathcal{H}_{\mathcal{K}}(M)} \mathbb{E} \left[\mathcal{R}_{n}(f, \mathcal{A}) \right] = \Omega \left(n^{(\nu+d)/(2\nu+d)} \right)$$

• Several algorithms with theoretical guarantees.

Algorithm	Regret bounds
GP-UCB, GP-TS	sublinear for $\nu > d/2$
π -GP-UCB, LP-GP-UCB	sublinear for all ν values
SupKernelUCB, GP-ThreDS, RIPS	minimax near-optimal

Our Contributions

- We identify two gaps in existing results:
 - 1. Lower bounds provide limited information about the performance of 'good' algorithms on typical, non-adversarial problem instances
 - 2. Upper bounds do not adapt to easier problem instances
- Two main results:
 - 1. An instance dependent lower bound for algorithms that achieve $O(n^{a_0})$ regret uniformly over $\mathcal{H}_{\mathcal{K}_{\mathcal{V}}}(M)$
 - 2. A new algorithm (A_1) that can adapt to some structure in problems.

Instance-Dependent Lower Bound

- (A1) \mathcal{A} is a_0 -consistent: $\mathbb{E}[\mathcal{R}_n(f, \mathcal{A})] = o(n^a)$ for $a > a_0$, uniformly over all $f \in \mathcal{H}_{\mathcal{K}_v}(M)$
- (A2) Local growth property: $f \approx (x x^*)^b$ near its optimizer.

Theorem 1: If (f, \mathcal{A}) satisfy (A1-A2), then we have

$$\mathbb{E}[\mathcal{R}_n(f,\mathcal{A})] = \Omega(n^{\alpha}), \quad \text{for} \quad \alpha < (1-a_0)\left(1 + \frac{d}{\nu}\left(1 - \frac{\nu}{b}\right)\right).$$

The lower bound increases with:

- Large a_0 : stronger uniform regret assumption
- Large *b*: 'flatter' near-optimal regions

Instance-Dependent Upper Bound

Theorem 2: We design an algorithm, \mathcal{A}_1 , satisfying

 $\mathbb{E}[\mathcal{R}_n(f,\mathcal{A}_1)] = \mathcal{O}(n^{\alpha}),$

where
$$\alpha = \min\left\{\frac{d+\nu}{d+2\nu}, \frac{d(1-\xi/b)^++\xi}{d(1-\xi/b)^++2\xi}\right\}$$
 and $\xi = \min\{1,\nu\}$.

- \mathcal{A}_1 achieves the minimax near-optimal worst-case regret.
- The regret of \mathcal{A}_1 is strictly better than the minimax rate when $b > 0, d \ge 1$ and $0 < \nu < \frac{1}{1-1/b}$.

Comparison

Future Work: Close the gap between the upper and lower bounds.

THANKS

Link to the paper: https://arxiv.org/abs/2203.06297

