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Problem Setup

* Unknown objective f:[0,1]¢ - R

x € [0,1]¢
* f can be accessed via zeroth-order-oracle l
)
* Assumptions:

* f € RKHS of a kernel K, with norm < M l

* The noise n7 is i.i.d. N(0, 6%) with a known ¢
fCx) +n

Objective: Given a budget n, design an adaptive querying strategy (A ) to choose
points x4, X5, ..., X, such that the cumulative regret R, (f, A) is small, where

Ralf,A) = nf (&) = ) flx)
i=1



Prior Results: Minimax Framework

 Scarlett et al. (2017) showed that for Matern kernels with
smoothness v

. — (v+d)/(2v+d)
min fer}[lja})((M) E[R,(f,A)] Q(n )

 Several algorithms with theoretical guarantees.

Algorithm Regret bounds

GP-UCB, GP-TS sublinear forv > d/2
m-GP-UCB, LP-GP-UCB sublinear for all v values

SupKernelUCB, GP-ThreDS, RIPS minimax near-optimal



Our Contributions

* We identify two gaps in existing results:

1. Lower bounds provide limited information about the performance of ‘good’
algorithms on typical, non-adversarial problem instances

2. Upper bounds do not adapt to easier problem instances

* Two main results:

1. Aninstance dependent lower bound for algorithms that achieve O (n“o)
regret uniformly over Hy. (M)

2. A new algorithm (cA) that can adapt to some structure in problems.



Instance-Dependent Lower Bound

* (A1) A is ay-consistent: E[R,,(f,A)] = o(n?) for a > a,, uniformly
over all f € Hy. (M)

* (A2) Local growth property: f = (x — x*)?

near its optimizer.
Theorem 1: If (f, A) satisfy (A1-A2), then we have

E[R,(f,A)] = Q(n%),  for a<(1—apy (1 +2(1- g))

The lower bound increases with:
* lLarge ay: stronger uniform regret assumption
e Large b: ‘flatter’ near-optimal regions



Instance-Dependent Upper Bound

Theorem 2: We design an algorithm, A, satisfying

E[R,(f,A1)] = 0(n?),

d+v d(1-&/b)T+¢&
d+2v’ d(1-&/b)t+2¢&

where a = min{ } and ¢ = min{ 1, v}.

* A, achieves the minimax near-optimal worst-case regret.

* The regret of A, is strictly better than the minimax rate when b > 0,d = 1and 0 <

1
V<o
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Future Work: Close the gap between the upper and
lower bounds.
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