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Problem Setup 

• Unknown objective 𝑓: 0,1 𝑑 → ℝ

• 𝑓 can be accessed via zeroth-order-oracle 

• Assumptions:
• 𝑓 ∈ RKHS of a kernel 𝐾, with norm ≤𝑀

• The noise 𝜂 is i.i.d. 𝑁 0, 𝜎2 with a known 𝜎2

𝑓 ⋅

𝑓 𝑥 + 𝜂

𝑥 ∈ 0,1 𝑑

Objective: Given a budget 𝑛, design an adaptive querying strategy (𝒜 ) to choose 
points 𝑥1, 𝑥2, … , 𝑥𝑛 such that the cumulative regret ℛ𝓃(𝑓,𝒜) is small, where  

ℛ𝓃 𝑓,𝒜 = 𝑛𝑓 𝑥∗ −

𝑖=1

𝑛

𝑓 𝑥𝑡



Prior Results: Minimax Framework

• Scarlett et al. (2017) showed that for Matern kernels with 
smoothness 𝜈

• Several algorithms with theoretical guarantees. 

min
𝒜

max
𝑓∈ℋ𝒦 𝑀

𝔼 ℛ𝓃 𝑓,𝒜 = Ω 𝑛 𝜈+𝑑 / 2𝜈+𝑑

Algorithm Regret bounds

GP-UCB, GP-TS sublinear for 𝜈 > 𝑑/2

𝜋-GP-UCB, LP-GP-UCB sublinear for all 𝜈 values

SupKernelUCB, GP-ThreDS, RIPS minimax near-optimal



Our Contributions 

• We identify two gaps in existing results: 
1. Lower bounds provide limited information about the performance of ‘good’ 

algorithms on typical, non-adversarial problem instances

2. Upper bounds do not adapt to easier problem instances

• Two main results:
1. An instance dependent lower bound for algorithms that achieve 𝒪 𝑛𝑎0

regret uniformly over ℋ𝒦𝜈
𝑀

2. A new algorithm (𝒜1) that can adapt to some structure in problems. 



Instance-Dependent Lower Bound 

Theorem 1: If 𝑓,𝒜 satisfy (A1-A2), then we have 

𝔼 ℛ𝓃 𝑓,𝒜 = Ω 𝑛𝛼 , for 𝛼 < 1 − 𝑎0 1 +
𝑑

𝜈
1 −

𝜈

𝑏
.

The lower bound increases with:
• Large 𝑎0: stronger uniform regret assumption 
• Large 𝑏: ‘flatter’ near-optimal regions 

• (A1) 𝒜 is 𝑎0-consistent: 𝔼 ℛ𝓃 𝑓,𝒜 = 𝑜 𝑛𝑎 for 𝑎 > 𝑎0, uniformly 
over all 𝑓 ∈ ℋ𝒦𝜈

𝑀

• (A2) Local growth property: 𝑓 ≈ 𝑥 − 𝑥∗ 𝑏 near its optimizer.



Instance-Dependent Upper Bound 

Theorem 2: We design an algorithm, 𝒜1, satisfying

𝔼 ℛ𝓃 𝑓,𝒜1 = 𝒪 𝑛𝛼 , 

where 𝛼 = min
𝑑+𝜈

𝑑+2𝜈
,
𝑑 1−𝜉/𝑏 ++𝜉

𝑑 1−𝜉/𝑏 ++2𝜉
and 𝜉 = min{ 1, 𝜈}.

• 𝒜1 achieves the minimax near-optimal worst-case regret. 

• The regret of 𝒜1 is strictly better than the minimax rate when 𝑏 > 0, 𝑑 ≥ 1 and 0 <

𝜈 <
1

1−1/𝑏
.



Comparison

Future Work: Close the gap between the upper and 
lower bounds.
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