

Residual-based Sampling for Online Outlier Robust PCA

Tianhao Zhu Jie Shen

Stevens Institute of Technology

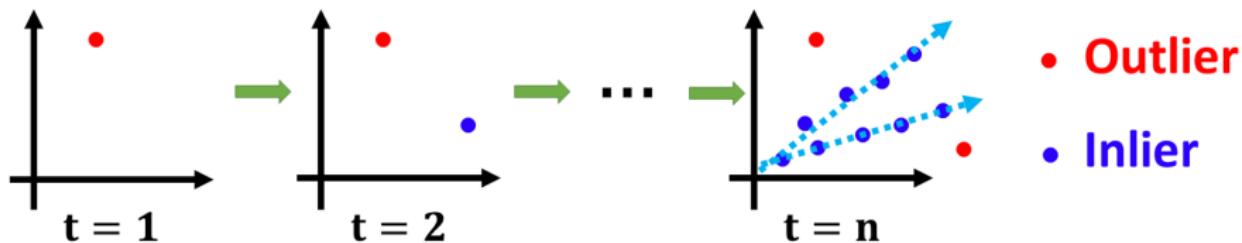
July 19, 2022

Problem Setup

This Work: The Online Outlier Robust PCA for data with z outliers:

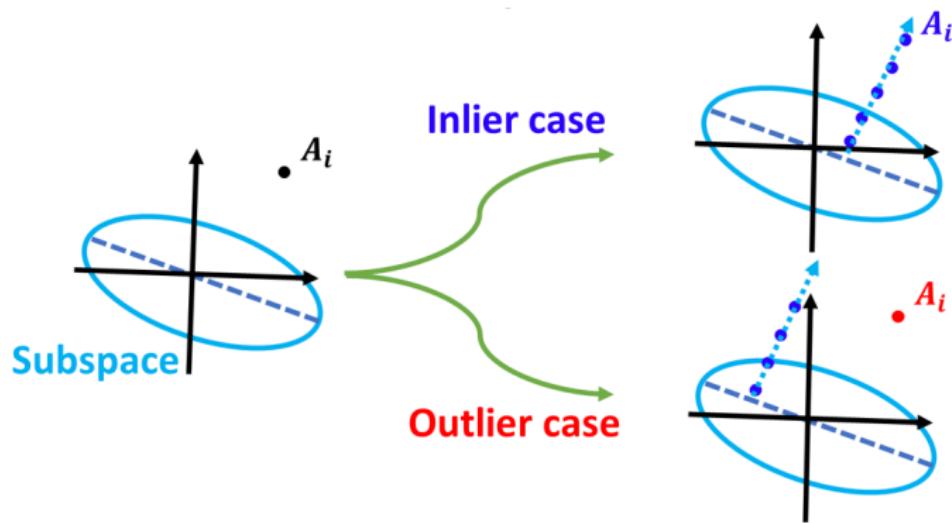
$$A = A_{\text{in}} \cup A_{\text{out}}, \quad k \ll z \ll n$$

$$\text{OPT}_k = \min \|A_{\text{in}} - UV\|_F^2, \text{ s.t. } |A_{\text{out}}| \leq z.$$



Challenge

When we encounter a point far from the current subspace, we are not sure if it is **inlier** or **outlier**.



Algorithm

Residual-based Sampling:

Residual norm: $\left\| \prod_U^\perp A_i \right\| = \|A_i - UU^T A_i\|.$

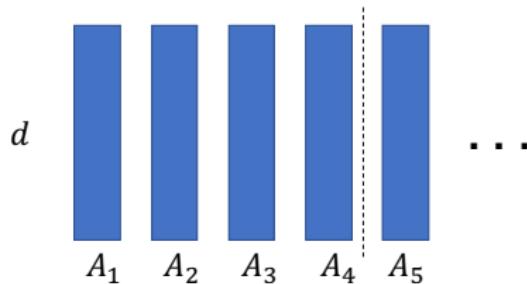
– target error $\xi \geq \text{OPT}_k$.

Key: Residual norm is tied to objective contribution.

– Residual norm $\geq \frac{\xi}{k} \implies$ A new direction is formed.

– Residual norm $< \frac{\xi}{k} \implies$ Contribution to objective is small.

Framework



Algorithm

Threshold based Outliers Removal:

Problem: Distant inliers and outliers are indistinguishable.

Key: Each dimension of the subspace contains at least z/k inliers.

- Residual norm $\geq \frac{\xi}{z} \implies$ Marked outlier.
- Residual norm $< \frac{\xi}{z} \implies$ Marked inlier.

Three categories:

- Residual norm $\leq \frac{\xi}{z} \implies$ **Non-informative inlier.**

Linearly combine the point.

- Residual norm between $\frac{\xi}{z}$ and $\frac{\xi}{k}$ \implies **Non-informative outlier.**

Linearly combine the point with probability $O(k \left\| \prod_U A_i \right\|^2 / \xi)$.

- Residual norm $\geq \frac{\xi}{k} \implies$ **Informative outlier.**

Add it to the subspace with probability k/z .

Contributions

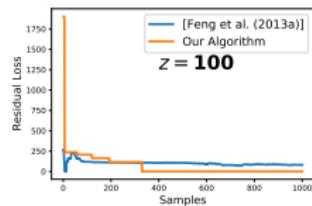
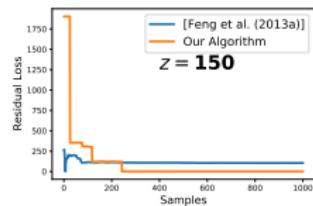
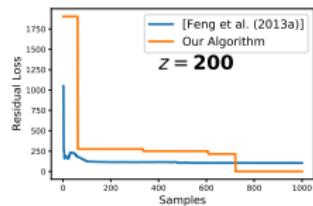
The first to provide the **provable algorithm** using sampling method.

Work	Online?	Outlier-robust?	Error
[Xu et al., 2012]	✗	✓	OPT_k
[Bhaskara et al., 2019]	✓	✗	$O((\log \frac{\ A_{in}\ _F^2}{\xi})^2 \cdot \xi)$
[Feng et al., 2013]	✓	✓	unknown
Algorithm 1	✓	✓	$O((\log \frac{\ A_{in}\ _F^2}{\xi})^2 \cdot \xi)$
Algorithm 2	≈	✓	$OPT_k + \epsilon \xi$

Experiments

Benchmark model [Feng et al. 2013]: Updating subspace using **SVD**.

$n = 1000, d = 500, k = 5$



Algorithm	Embedding Dimension	Marked Outliers ($z = 100$)	Execution Time (s)
Our algorithm	12	132	7.37
[Feng et al., 2013]	5	29	41.52

Summary

Our Online ORPCA is **fast**, **outlier robust** and returns **non-asymptotic** results.

Thank you!

See you in the Poster Session 1, Hall E #1108.

Reference

- Bhaskara, A., Lattanzi, S., Vassilvitskii, S., and Zadimoghaddam, M. (2019).
Residual based sampling for online low rank approximation.
In *Proceedings of the 60th IEEE Annual Symposium on Foundations of Computer Science*, pages 1596–1614.
- Feng, J., Xu, H., Mannor, S., and Yan, S. (2013).
Online PCA for contaminated data.
In *Proceedings of the 27th Annual Conference on Neural Information Processing Systems*, pages 764–772.
- Xu, H., Caramanis, C., and Sanghavi, S. (2012).
Robust PCA via outlier pursuit.
IEEE Transactions on Information Theory, 58(5):3047–3064.