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Graph Neural Networks
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Graph Neural Networks
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a, = AGGREGATE ({{ h,| u€N(v) }})

h, 1 = UpPDATE (h,, a,)



Graph Neural Networks
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Cannot distinguish some very simple graphs!




k-WL: Higher-Order Methods

GNN on k-tuples of original nodes



S,: substructures up to size k
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* Preprocess substructures up to size k
« Add as extra node features

* Run standard GNN
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* Preprocess substructures up to size k

 Add as extra node features

* Run standard GNN



N,: preprocessing up to k hops

 Preprocess k-hop neighborhood



N,: preprocessing up to k hops
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 Preprocess k-hop neighborhood

 Add extra features

* Run standard GNN



Removing some of the nodes
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« Multiple runs of a standard GNN
 Removing some nodes in each run

« Aggregate runs in the end



Removing some of the nodes

S SO

« Multiple runs of a standard GNN

 Removing some nodes in each run

« Aggregate runs in the end



M, : marking up to k nodes
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M, : marking up to k nodes
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« Mark some nodes in each run

Handle the marked nodes differently

av = AGGRmarked ( ) T AGGRunmarked ( )



M, : marking up to k nodes
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« Mark some nodes in each run

« Handle the marked nodes differently

av = AGGRmarked ( ) T AGGRunmarked ( )

|

Strictly more expressive than node removals!



GNN extensions

— k-WL: k" order methods
— S, substructures up to size k
— N,: k-hop neighborhood

— M,: randomly mark k nodes



Comparison of expressiveness
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A —> B: A can distinguish a pair of graphs that B cannot
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Counting substructures

Can GNNs count cliqgues or cycles?
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k-cliques any clique (k + 2)-cliques
can already with k=1
count (k + 1)-cycles
k-cycles (2k 4+ 1)-cycles only ifd > k+1
(k + 1)-cliques (k + 3)-cliques
cannot for small k values for small k values
count
(k + 1)-cycles (2k + 2)-cycles
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