A Theoretical Comparison of Graph Neural Network Extensions

Pál András Papp Huawei Tech., Switzerland (this work at ETH Zürich)

Roger Wattenhofer ETH Zürich

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Graph Neural Networks

Graph Neural Networks

 $a_{v} = \text{Aggregate} (\{ \{ h_{u} \mid u \in N(v) \} \})$ $h_{v}^{(t+1)} = \text{Update} (h_{v}, a_{v})$

Graph Neural Networks

Cannot distinguish some very simple graphs!

k-WL: Higher-Order Methods

GNN on *k*-tuples of original nodes

S_k : substructures up to size k

- Preprocess substructures up to size *k*
- Add as extra node features
- Run standard GNN

S_k : substructures up to size k

- Preprocess substructures up to size *k*
- Add as extra node features
- Run standard GNN

N_k: preprocessing up to k hops

• Preprocess *k*-hop neighborhood

N_k: preprocessing up to k hops

- Preprocess *k*-hop neighborhood
- Add extra features
- Run standard GNN

Removing some of the nodes

- Multiple runs of a standard GNN
- Removing some nodes in each run
- Aggregate runs in the end

Removing some of the nodes

- Multiple runs of a standard GNN
- Removing some nodes in each run
- Aggregate runs in the end

M_k: marking up to k nodes

M_k: marking up to k nodes

- Mark some nodes in each run
- Handle the marked nodes differently

 $a_{v} = \text{AGGR}_{marked} (\dots) + \text{AGGR}_{unmarked} (\dots)$

M_k: marking up to k nodes

- Mark some nodes in each run
- Handle the marked nodes differently

$$a_v = AGGR_{marked} (\dots) + AGGR_{unmarked} (\dots)$$

Strictly more expressive than node removals!

GNN extensions

- \rightarrow *k*-WL: *k*th order methods
- \rightarrow S_k: substructures up to size k
- $\rightarrow N_k$: *k*-hop neighborhood
- $\rightarrow M_k$: randomly mark k nodes

Counting substructures

Can GNNs count **cliques** or **cycles**?

	S_k	N_k	M_k
can count	k-cliques	any clique already with $k=1$ (2k+1)-cycles	(k+2)-cliques
	k-cycles		(k+1)-cycles only if $d \ge k+1$
cannot count	(k + 1)-cliques for small k values		(k+3)-cliques for small k values
	(k+1)-cycles	(2k+2)-cycles	

A Theoretical Comparison of Graph Neural Network Extensions

Pál András Papp Huawei Tech., Switzerland (this work at ETH Zürich)

Roger Wattenhofer ETH Zürich

ETH Zurich – Distributed Computing – www.disco.ethz.ch