o ICML

International Conference
On Machine Learning

NISPA: Neuro-Inspired Stability-Plasticity Adaptation
for Continual Learning in Sparse Networks

M. Burak Gurbuz and Constantine Dovrolis

Georgia School of
Tech | Computer Science

- College of Computing




Continual Learning and Catastrophic Forgetting

e Standard Neural Network Training
o Shuffled inputs satisfy i.i.d assumption

e Continual Learning
o Tasks encountered sequentially
o Catastrophic Forgetting: overwrite information from past task(s)
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From Neuroscience to Deep Learning
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NISPA: Putting It All Together
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NISPA Outperforms State-of-the-Art Methods

o NISPA outperforms baselines, using up to ten times fewer

parameters.
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Sparsity is Necessary
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Sparsity is Necessary

e Sparsity is an essential ingredient for continual learning.

o5 CIFAR10 (5 Tasks)
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Conclusion and Future Work

e Conclusion
o NISPA is a neuro-inspired continual learning approach.
o It uses sparsity and dynamic connectivity to avoid catastrophic
forgetting.
o Outperforms baselines using up to ten times fewer parameters.

e Future Work
o Selective unfreezing strategies
o Using network-theoretic metrics for connection rewiring.



