

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

E. Casanova^{1,2}, J. Weber², C. Shulby³, A. Candido Junior⁴, E. Gölge², Moacir A. Ponti^{1,5}

Zero-shot Text-to-Speech

Zero-shot Text-to-Speech

Resources and Performance Gap

English

Mandarin & a few others

Remaining languages

YourTTS, a multilingual model taking advantage of the high speaker count of English

Contribution

The first to explore a multilingual approach in ZS-TTS achieving state-of-the-art results +

- multilingual TTS
- zero shot TTS
- cross-lingual zero shot
- voice conversion

Multi-lingual TTS System

Zero Shot Learning

Cross-lingual Zero-Shot

Finetuning a TTS model with a short sample

Voice conversion

YourTTS inference

Language id concatenated to every char embedding:

- allows for code switching

YourTTS inference

Vocoder Transformer encodes text+language input (HiFi-GAN) into sequence of pseudo-phonemes Flow Decoder (Affine Coupling Layer x 4) **Duration Regulator** Stochastic Duration Linear Projection Layer Predictor Linear Projection Layer Stochastic Duration Predictor Transformer Encoder -Transformer Encoder -{Spearer Embedding} (Transformer Block x 10) Noise Noise {Spealer **Embedding Layer Embedding Layer** Speaker Encoder

Input text

lang.id

audio ref.

Training

 z_p

VS

pseudo-phonemes

Loss Functions

Speaker Embedding pretraining:

Softmax + Prototype Angular with VoxCeleb dataset

TTS Model:

 Speaker Consistency Loss
 Cosine similarity between ground truth and generated audio embeddings

•	Portuguese	O modelo me ouviu falando apenas em Português. Mas, com YourTTS, sei falar também em Inglês e Francês.
1	English	The model heard me speaking only Portuguese. But with YourTTS I can also speak English and French
•	French	Le modèle m'a entendu parler uniquement en

portugais. Mais avec YourTTS, je peux aussi

parler en anglais et en français.

Results

Experiments

- 1. VCTK dataset (98 speakers);
- 2. VCTK and TTS-Portuguese Corpus (1 speaker);
- 3. VCTK, TTS-Portuguese and M-AILABS french dataset (5 speakers);
- 4. VCTK + TTS-Portuguese + M-AILABS + LibriTTS (1151 speakers).

Experiments Setup

• All experiments were implemented using **coqui** TTS: github.com/coqui-ai/TTS an open source TTS framework.

 Audio samples and checkpoints of all experiments are available on:

github.com/Edresson/YourTTS

ZS-TTS results

	VCTK			LIBRITTS			MLS-PT		
EXP.	SECS	MOS	SIM-MOS	SECS	MOS	SIM-MOS	SECS	MOS	SIM-MOS
GROUND TRUTH	0.824	4.26±0.04	4.19±0.06	0.931	4.22±0.05	4.22 ± 0.06	0.9018	4.61±0.05	4.41 ± 0.05
ATTENTRON ZS	(0.731)	(3.86 ± 0.05)	(3.30 ± 0.06)	_	_	_	_	_	_
SC-GLOWTTS	(0.804)	(3.78 ± 0.07)	(3.99 ± 0.07)	_	_	_	_	_	_
Exp. 1	0.864	4.21±0.04	4.16±0.05	0.754	4.25±0.05	3.98 ± 0.07	_	_	_
Exp. $1 + SCL$	0.861	4.20 ± 0.05	4.13±0.06	0.765	4.21 ± 0.04	4.05 ± 0.07	_	_	_
Exp. 2	0.857	4.24±0.04	4.15±0.06	0.762	4.22±0.05	4.01 ± 0.07	0.740	3.96 ± 0.08	3.02 ± 0.1
EXP. 2 + SCL	0.864	4.19±0.05	4.17±0.06	0.773	4.23±0.05	4.01 ± 0.07	0.745	4.09 ± 0.07	$2.98{\pm}0.1$
EXP. 3	0.851	4.21±0.04	4.10±0.06	0.761	4.21±0.04	4.01±0.05	0.761	4.01±0.08	$3.19{\pm}0.1$
EXP. 3 + SCL	0.855	4.22±0.05	4.06 ± 0.06	0.778	4.17 ± 0.05	3.98 ± 0.07	0.766	4.11±0.07	3.17 ± 0.1
Exp. 4 + SCL	0.843	$4.23{\pm}0.05$	4.10 ± 0.06	0.856	4.18 ± 0.05	$4.07{\pm}0.07$	0.798	$3.97{\pm}0.08$	3.07 ± 0.1

- SOTA results in similarity and speech quality for unseen speakers
- Produce female voice in PT without seen female voice during training

Zero-shot voice conversion results

REF/TAR	M-M		M-F		F-F		F-M		ALL	
	MOS	SIM-MOS								
EN-EN	4.22±0.10	4.15±0.12	4.14±0.09	4.11±0.12	4.16±0.12	3.96 ± 0.15	4.26±0.09	4.05±0.11	4.20 ± 0.05	4.07±0.06
PT-PT	3.84 ± 0.18	3.80 ± 0.15	3.46 ± 0.10	3.12 ± 0.17	3.66 ± 0.2	3.35 ± 0.19	3.67 ± 0.16	3.54 ± 0.16	3.64 ± 0.09	3.43 ± 0.09
EN-PT	4.17±0.09	3.68 ± 0.10	$4.24{\pm}0.08$	3.54 ± 0.11	4.14±0.09	3.58 ± 0.12	4.12±0.10	3.58 ± 0.11	4.17±0.04	3.59 ± 0.05
PT-EN	3.62 ± 0.16	3.8 ± 0.10	2.95 ± 0.2	3.67 ± 0.11	3.51 ± 0.18	3.63 ± 0.11	3.47 ± 0.18	3.57 ± 0.11	3.40 ± 0.09	3.67 ± 0.05

- Intra-lingual results comparable to SOTA in VCTK
- Cross-lingual results EN2PT similar as PT2PT

Speaker Adaptation results

	SEX	DUR. (SAM.)	Mode	SECS	MOS	SIM-MOS
EN			GT	0.875	4.17 ± 0.09	4.08±0.13
	M	61s (15)	ZS	0.851	4.11 ± 0.07	4.04 ± 0.09
			FT	0.880	4.17 ± 0.07	4.08±0.09
			GT	0.894	4.25 ± 0.11	4.17 ± 0.13
	F	44s (11)	ZS	0.814	4.12 ± 0.08	4.11 ± 0.08
			FT	0.896	4.10 ± 0.08	$4.17{\pm}0.08$
PT	М	31s (7)	GT	0.880	4.76 ± 0.12	4.31 ± 0.14
			ZS	0.817	4.03 ± 0.11	3.35 ± 0.12
			FT	0.915	3.74 ± 0.12	4.19 ± 0.07
		20s (5)	GT	0.873	4.62 ± 0.19	4.65 ± 0.14
	F		ZS	0.743	3.59 ± 0.13	2.77 ± 0.15
			FT	0.930	3.48 ± 0.13	4.43 ± 0.06

- good results with 1 min of speech, presenting naturalness over zero-shot
- 44 seconds or less reduces the quality when compared to the zero-shot.

Limitations and room for improvement

- Accent supressing
- Monotonic tones for long sentences
- Unnatural speeds for some speaker/language combinations
- Reduce audio artefacts

Possibilities

- Capture different accents and particularities
- Learn from few speakers of (very) low resource languages
 - o indigenous languages
 - dialects
- Learn speech of persons that may lose their voices

Thanks

