Prototype Based Classification from
Hierarchy to Fairness
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Hierarchical classification

Given x, classify it at many levels

LO: Animal
L1: Dog
L2: Labrador




Hierarchical classification Fair classification
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L0: Animal Should person A (x) get a loan (y)

L1: Dog regardless of their sex (s)?
L2: Labrador
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Separate problems solved by separate architectures



Can we build a classifier that

Uses interpretable representations?

Supports multiple concept relationships?
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Concept Subspace Network



Prototype Based Classification

* Encode x into a latent representation z

* Measure Euclidean distance to each (learnable) prototype
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Prototype Based Classification

* Encode x into a latent representation z

* Measure Euclidean distance to each (learnable) prototype
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Prototypes define a “Concept Subspace” for classification.
Moving relative to that space changes classifications.



Enabling multi-concept classification

* Introduce a new set of prototypes for each ;
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Multi-concept classification
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Hierarchical classification - Parallel subspaces



Multi-concept classification
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Results: Fair Classification

Match SOTA, compared to other fair classifiers
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Table 1: Mean Adult dataset fairness results.

Model y Acc. sAcc. DI DD-0.5
CSN 0.85 0.67 0.83 0.16
Adv. 0.85 0.67 0.87 0.16
VFAE 0.85 0.70  0.82 0.17
FR Train 0.85 0.67 0.83 0.16
Wass. DB (.81 0.67 092 0.08
Random 0.76 0.67

Table 2: Mean German dataset fairness results.

Model yAcc. sAcc. DI DD-0.5
CSN 0.73 0.81  0.70 0.10
Adv. 0.73 0.81 0.63 0.10
VFAE 0.72 0.81  0.47 0.23
FR Train  0.72 0.80  0.55 0.16
Wass DB 0.72 0.81 0.33 0.02
Random 0.70 0.81



Results: Hierarchical Classification

Achieve SOTA (for given backbone)
on CIFAR100

- Greater overall accuracy
- Lower cost of errors

Yo% Y, % A.C.
CSN  0.76 (0.0) 0.85(0.0) 0.76 (0.02)
HPN  0.71(0.0) 0.80(0.0) 0.97 (0.04)
Init. 0.01 0.05 3.88
CSN  0.78(0.0) 0.88(0.0) 0.91 (0.0)
MGP  0.76 _ 1.05
Init. 0.01 0.05 7.33
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From Leveraging Class Hierarchies with Metric-Guided
Prototype Learning. Garnot and Landrieu 2021.



Results: Fair and Hierarchical Classification

In human study:
1) Preserve participant privacy
2) Exploit hierarchical structure




Prototype Based Classification from Hierarchy to Fairness

1

2) Unified framework for diverse classification tasks

S

Interpretable representations with controllable relations
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