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Challenges of quantum ML

e Quantum ML: an emerging field

e Current hardware limits to tiny experiments, so how do you do ML?
— Focus on theory

e \We build on established literature on GNN model expressivity and ask similar
questions about quantum models



Contributions

e Our framework for quantum methods on graphs:

Equivariant Quantum Graph Circuits (EQGC)
o Formalize what properties a parameterized quantum circuit should satisfy for
graph ML
o Explore design space, propose subclasses, relate to prior work
o Plenty of further open questions
e Prove universal approximation of functions over bounded-size graphs
o Shown for a certain EQGC subclass, EDU-QGCs
o Quantum circuits are probabilistic — needed size depends on confidence parameter
e This exceeds the expressivity of popular classical GNNs called Message-Passing
Neural Networks (MPNNs), and matches that of randomized MPNNs



A broad class of quantum methods

e We investigate a broad class of architectures with the following structure:
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e Reordering input should change output appropriately:
Equivariant Quantum Graph Circuits (EQGC)



Subclasses of EQGCs

e We consider parameterizations of EQGCs, via one- and two-node
Hamiltonians and unitary operators = more practical subclasses

EQGC



Achieving universality

e Step 1: a sufficiently large EDU-QGC can "simulate" any deterministic MPNN
with sum aggregation
Step 2: a simple quantum circuit can "simulate" classical randomization
By similar arguments to randomized MPNNSs, this gives us universality:

For any real-valued function fover graphs up to size n, a sufficiently large
EDU-QGC can represent it with arbitrarily low probability of error.



Experiments

e Toy dataset challenging for MPNNs: "one cycle or two cycles", 6 to 10 nodes
e Separate 8-node graphs as test set
e EDU-QGC models with one qubit per node, different depths
e Training in classical simulation with Adam optimizer
e Success, scales well to many layers!
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Significance and limitations

e First steps in understanding the capabilities of quantum models over graphs
e Potential for plenty of further work, both theoretical and experimental
e Further work could show quantum advantage!
o More scalable ansatze: perhaps similar results hold for less powerful EQGC
models?
o  Function classes for quantum advantage: perhaps some class of functions can be
approximated by small quantum models, but would need huge randomised
MPNNs?



Thank you for listening!

Any questions?

Contact: pmernyei@gmail.com



