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Focusing solely on accuracy can lead to
undesirable subgroup outcomes

Disadvantaged
subgroup



Multi-group learning

Introduced by Rothblum and Yona (2021).

Setup: Reference predictors H < {h : X — Y}, subgroupsG c {g S X },
Observe: Data (x1,V1), ..., (X3, Yn)

Goal: Find a predictor f satisfying

E[¢(f(x),y) |x € g] =| min E[£(h(x),y)|x € g] +|e.(g)| |forallg€G

Best reference
predictor error on g

ERM: If we fix a single group g, can achieve €,,(g) = O (

\ [#n(9) Number of
observations in g




Main results

Simple algorithm (Nearly) optimal algorithm
Iterative boosting algorithm Reduction to sleeping experts
Outputs a decision list f satisfying Outputs a probabilistic predictor f satisfying
_—
5 3 |log|H]|G] log| H||G]
en(g) = 0 #—() e.(g) < O ———
forall g € G. forall g € .

Minimum

probability mass
among g €
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Iterative builds a decision list.
Decision nodes indexed by G. ge(x) =1

Prediction nodes indexed by H. @
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Iterative builds a decision list.
Decision nodes indexed by G. g:(x) =1
Prediction nodes indexed by H.

At round t:
Current decision list f;.
Search for h € H, g € G such that

Lo(fe19) = Ly(h|g) + £,(9)

If such a pair exists, prepend it to the
beginning of f; to get f;. 1.
Else, terminate.
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Iterative builds a decision list.
Decision nodes indexed by (.
Prediction nodes indexed by H.

At round t:
Current decision list f;.
Search for h € H, g € G such that

Lo(fe19) = Ly(h|g) + £,(9)

If such a pair exists, prepend it to the
beginning of f; to get f;. 1.
Else, terminate.

Concurrent work:

Globus-Harris et al.
(2022)




(Nearly) Optimal algorithm

Reduction to sleeping experts
Create an “expert” for every (h,g) € H X G.

For data pointsi =1, ..., n:
Expert (h, g) is awake if g(x;) = 1.
Create distribution p; over awake experts.
Suffer loss €; = X (p gy 9 (X)) €(h(x;), yi).

Final predictor: Uniform distribution over internal hypotheses p;.



(Nearly) Optimal algorithm

Reduction to sleeping experts

Create an “expert” for every (h,g) € H X G. Online subgroup fairness:
Blum and Lykouris (2020)

For data pointsi =1, ..., n:
Expert (h, g) is awake if g(x;) = 1.
Create distribution p; over awake experts.

Online-to-batch is tricky:
Suffer loss €; = X (p gy 9 (X)) €(h(x;), yi).

|G| constraints to satisfy!

Final predictor: Uniform distribution over internal hypotheses p;.
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Algorithms for multi-group learning setting.

Simple but suboptimal approach.
(Nearly) optimal but complicated approach.

Open problems:
A simple and optimal algorithm?
Computationally efficient algorithms?
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Thank
you!



