Order Constraints in Optimal Transport

<u>Fabian Lim</u>, Laura Wynter, Shiau Hong Lim IBM Research, Singapore

Optimal Transport with Order Constraints

- Provide context to OT
- Example context in text application
 - "red"-"black" (color)
 - "piece"-"pair" (multiplicity)
 - "clothing"-"pants" (inventory)
- Standard OT gives top solution; OT with OC gives all 4.
- The human user selects the most interpretable solution.

Optimal Transport with Order Constraints

• Consider color transfer

Formulation of OT with Order Constraints

• For given sum/row weights a,b, OT minimizes a linear cost D over a transport polytope:

$$U(a,b) = \{ \Pi \in \mathbb{R}_+^{m \times n} : \Pi \mathbf{1}_n = a, \Pi^T \mathbf{1}_m = b \}$$

We propose to define order constraints (OC) on top of the transport polytope:

$$\min_{\Pi \in U(a,b)} f(\Pi) := \operatorname{tr} \left(D^T \Pi \right), \qquad \text{mn inequalities.}$$

$$\operatorname{s.t} \left[\Pi_{i_k j_k} \ge \cdots \ge \Pi_{i_1 j_1}, \quad \Pi_{i_1 j_1} \ge \Pi_{pq} \right] \text{ for } pq \in V,$$

where *V* indexes outside of *k* num. of OC positions:

$$V := [mn] \setminus \{i_{\ell} j_{\ell} : \ell \in [k]\}$$

Prop. 2.1, Cor 2.2 provides sufficient conditions for the OT with OC to be feasible. In general, feasibility depends on constraints *a,b* and *OC* positions.

Solving the OT with OC Formulation

Propose an iterative ADMM formulation

Algorithm 1 Iterative procedure for OT under order constraints $O_{ij_{[k]}}$ with linear costs $f(X) = \operatorname{tr}(D^T X)$.

Require: Costs D, penalty ρ , initial X_0, Z_0 .

- 1: **for** round $t \ge 1$ until stopping **do**
- 2: Update $X_{t+1} = \text{Proj}_{C_1(a,b)} (Z_t M_t \rho^{-1}D)$
- 3: Update $Z_{t+1} = \text{Proj}_{C_2}(X_{t+1} + M_t)$.
- 4: Update (scaled) dual variable $M_{t+1} = M_t + X_t Z_t$.
- 5: Return X_t
- Line 2 $\longrightarrow \mathcal{C}_1(a,b)$ Proposition 3.1 (Lim, et. al) Affine, matrix-vector ops

Solving the OT with OC Formulation

• Alg1, Line 3: Update $Z_{t+1} = \operatorname{Proj}_{\mathcal{C}_2} (X_{t+1} + M_t)$

 $\stackrel{ o}{\sim}$

Proposition 3.2 (Lim, et. al)

Extension of Pooled-Adjacent

Violators Algorithm (PAVA),

(Grotzinger, Witzgall, 84),

```
Algorithm 2 ePAVA for \mathcal{C}_2 = O_{ij_{[k]}} for k \in [mn]
```

Require: $X \in \mathbb{R}^{m \times n}$. Indices $ij_{[k]}$.

1:
$$\ell := 1, B := 1, \text{le}[1] := \text{ri}[1] := 1, \text{val}[1] := T(0)$$
.

2: for $\ell \leq k$ do

3:
$$B := B + 1, \ell := \ell + 1, le[B] := ri[B] := \ell,$$
 $val[B] := X_{i_\ell j_\ell}.$

4: **for** $B \ge 2$ and $val[B] \le val[B-1]$ **do**

5: Let q = ri[B].

6: if B=2 then

7: Solve and store $\tilde{\eta} \geq 0$ satisfying $T(\tilde{\eta}) = \Delta_{2q} + \tilde{\eta}/(q-1)$. Set $val[B-1] := T(\tilde{\eta})$.

8: **else**

9: Set $val[B-1] := \Delta_{pq}$ for p = ri[B-1].

10: Set ri[B-1] := ri[B]. Decrement B := B-1.

11: Return $B, \tilde{\eta}$, le, ri, and val.

Threshold T

$$\Delta_{pq} := \sum_{\ell=p}^q X_{i_\ell j_\ell}/(q-p+1)$$

coalescing

Solving the OT with OC Formulation

• For a problem size mn, Algorithm 1, initialized with $Z_0 = M_0 = 0$, achieves iteration error:

$$f(\bar{X}_t) - f^* \leq \delta$$
,

in at most the following number of operations:

$$\mathcal{O}(\|D\|_{\infty}/\delta \cdot mn\log(mn))$$

Thm 3.3, Prop 3.4 (Lim, et. al)

Explainability via Branch-and-Bound

Estimate important variates to define order constraints

Prune Search (Prop. 4.1)

 au_1, au_2 control diversity of candidates

Extend k OCs by variate ij **Algorithm 3** Learning subtree $\widehat{\mathcal{T}}(k_1, k_2, k_3, \tau_1, \tau_2)$ of $\mathcal{T}(k_3, \tau_1, \tau_2)$ and top- k_2 candidate plans for linear costs $f(\Pi) = \operatorname{tr}(D^T\Pi)$.

Require: Costs D, thresholds $0 \le \tau_1, \tau_2 \le 1$. Search upper limit k_1 , number of top candidates k_2 , and search depth $k_3 \le \min(m, n)$.

- 1: Compute $\hat{\Pi}_1$ using (1). Init $\widehat{\mathcal{T}}(k_1, k_2, k_3, \tau_1, \tau_2)$.
- 2: Use $\hat{\Pi}_1$, τ_1 , τ_2 in (16) and (17) to obtain \mathcal{I} and Φ_{ij} . Init. $\mathcal{S} = \{(ij, \Phi_{ij}) : ij \in \mathcal{I}\}$. count=0.
- 3: **for** count $< k_1$ **do**
- 4: Pop $ij_{[k]}$ having smallest Φ in S, for some k constraints. Compute \mathcal{L} from right-hand side of (23).
- 5: **if** $\hat{\Pi}_{k_2}$ is not yet obtained or $\mathcal{L} > f(\hat{\Pi}_{k_2})$ **then**
- 6: Solve Algorithm 1 with order constraint $O_{ij_{[k]}}$ for new candidate $\hat{\Pi}$. Set count += 1.
- 7: Update top- k_2 candidates $\hat{\Pi}_1, \hat{\Pi}_2, \dots, \hat{\Pi}_{k_2}$ and $\widehat{\mathcal{T}}(k_1, k_2, k_3, \tau_1, \tau_2)$ using new candidate $\hat{\Pi}$.
- 8: **if** k equals k_3 **then**
- : Go to line 4.
- 10: **if** $\hat{\Pi}_{k_2}$ not yet obtained or $f(\hat{\Pi}) < f(\hat{\Pi}_{k_2})$ **then**
- 11: Use $\hat{\Pi}_1$, τ_1 , τ_2 in (16) and (17) and obtain new variates $ij \in \mathcal{I}(\hat{\Pi})$ and $\{\Phi_{ij}\}_{ij \in \mathcal{I}(\hat{\Pi})}$.
- 12: **for** variate ij in $\mathcal{I}(\hat{\Pi})$ **do**
- 13: if $i \notin i_{[k]}$ and $j \notin j_{[k]}$ then
- 14: Push $(ij, i_1j_1, \dots, i_kj_k, \Phi_{ij})$ onto stack S.
- 15: Return top k_2 candidates $\hat{\Pi}_1, \hat{\Pi}_2, \dots, \hat{\Pi}_{k_2}$ and $\widehat{\mathcal{T}}(k_1, k_2, k_3, \tau_1, \tau_2)$.

Experiment Results

- Sentence Relationship Classification (e-SNLI)
 - OT with OC provides up to 5 points improvement over Greedy search

BESTF1 is a measure of how well candidate solutions agree with human-annotations in e-SNLI dataset

Algorithm	BestF1@n		
	n=2	n=5	n = 10
Algorithm 3 (ours)	$68.1 \pm .2$	$71.2 \pm .3$	$73.7 \pm .2$
Greedy version	$67.9 \pm .3$	$68.2 \pm .3$	$68.2 \pm .3$

- Color Transfer (SUN, WikiArt)
 - OT results have problems
 - Prior (human-crafted) constraints try to correct observed problems
 - OT w/ OC produces solutions that perform similarly as prior(humancrafted) versions

